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What function does an NN learning in a regression problem?

Figure: Regression
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What function does an NN learning in a regression problem?

The function f is unknown
We estimate f for two key purposes:

Prediction
Inference

By producing a good estimate for f where the variance of Á is not too large, we can make
accurate predictions for the response variable, y , based on a new value of x

The accuracy of a prediction for y depends on: Reducible error and Irreducible error
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Regression errors

Note that the model will not be a perfect estimate for f - the correct relationship between
input-output data; this inaccuracy introduces error
This error is reducible because we can potentially improve the accuracy of the estimated
(i.e., hypothesis) model by using the most appropriate learning technique to estimate the
target function f

Even if we could perfectly estimate f , there is still variability associated with Á that a�ects
the accuracy of predictions = irreducible error
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What function does an NN learning in a regression problem?

For example, consider the average of the squared di�erence between the predicted and
actual value of y

Var(Á) represents the variance associated with Á

E[(y ≠ f̂ (X ))2|X = x ] = [f (x) ≠ f̂ (x)]2
¸ ˚˙ ˝

Reducible

+ Var(Á)
¸ ˚˙ ˝
Irreducible

The aim of the learning process is to minimize the reducible error
What function does an NN learning in a classification problem?
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Decision Boundaries

Figure: Decision boundaries - Linear and nonlinear boundaries
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Revisiting simple NN - OR Logic

We already discussed that the OR function’s thresholding parameter theta is 1, for obvious
reasons.
The inputs are obviously boolean, so only 4 combinations are possible
(0, 0), (0, 1), (1, 0) and (1, 1)
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Revisiting Simple NN - OR Logic

Figure: Logic-OR gate **
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https://towardsdatascience.com/mcculloch-pitts-model-5fdf65ac5dd1


Logic Gates

Figure: Logic gates and XOR problem
© Vignesh Narayanan CSCE 790: Neural Networks and Their Applications September 19, 2023 9 / 52



Perceptron in general?

A 1≠layer NN with two inputs x1, x2 and one output y is given by

y = ‡(v0 + v1x1 + v2x2)

Let ‡(·) be the symmetric hard limit
The output space = {≠1, 1, 0}
When y = 0

0 = v0 + v1x1 + v2x2
x2 = ≠ v0

v2
≠ v1

v2
x1

This defines a line partitioning R2 into two decision regions, with y = +1 in one region and
y = ≠1 in the other region
In the general case of n inputs xj and m outputs yl , the one layer NN partitions Rn using m

hyperplanes (subspace of dimension n ≠ 1)
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Separability

Linear separability (for boolean functions): There exists a line (plane) such that all inputs
which produce a 1 lie on one side of the line (plane) and all inputs which produce a 0 lie on
other side of the line (plane).
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What NN learns?

Visualization
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http://playground.tensorflow.org


Underfitting vs Overfitting

There are always two aspects to consider when designing a learning algorithm:
Try to fit the data well
Be as robust as possible

The predictor that you have generated using your training data must also work well on new
data.
When we create predictors, usually the simpler the predictor is, the more robust it tends to
be in the sense of being able to be estimated reliably.
On the other hand, the simple models do not fit the training data aggressively.
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Underfitting vs Overfitting

If you try to fit the data too aggressively, then you may over-fit the training data.
This means that the predictors works very well on the training data, but is substantially
worse on the unseen test data.

Figure: Underfitting vs Overfitting
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Bias vs Variance

Bias æ how good the predictor is, on average; tends to be smaller with more complicated
models
Variance æ tends to be higher for more complex models
Simple model (e.g., just linear term) introduces (model) bias
Highly complex model introduces high variance
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Training vs Testing Error

Training error æ reflects whether the data fits well
Testing error æ reflects whether the predictor actually works on new data
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Generalization?

The out-of-sample error Eout measures how well our training on D has generalized to data
that we have not seen before.
Eout is based on the performance over the entire input space X .
Intuitively, if we want to estimate the value of Eout using a sample of data points, these
points must be ‘fresh’ test points that have not been used for training.
The in sample error Ein, by contrast, is based on data points that have been used for
training.
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Generalization

The value of Ein does not always generalize to a similar value of Eout .
Generalization is a key issue in learning.
One can define the generalization error as the discrepancy between Ein and Eout·
Universal approximation theorem warrants Ein æ 0 as number of neurons in the hidden
layers æ Œ
For more, check: Learning from Data: A Short Course, by Hsuan-Tien Lin, Malik
Magdon-Ismail, and Yaser Abu-Mostafa
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Interpolation

Definition
Interpolation occurs for a sample x whenever this sample belongs to the convex hull of a set of
samples X , {x1, . . . , xN}, if not, extrapolation occurs.

Theorem
Given a d≠dimensional dataset X , {x1, . . . , xN} with i.i.d. samples uniformly drawn from an

hyperball, the probability that a new sample x is in interpolation regime has the following

asymptotic behavior

lim
dæŒ

p(x œ Hull(X ))
¸ ˚˙ ˝

Interpolation

=
;

1 ≈∆ N>d≠12
d
2

0 ≈∆ N<d≠12
d
2

(1)

Learning in High Dimension Always Amounts to Extrapolation
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https://arxiv.org/pdf/2110.09485.pdf


Convex Set

Definition
A subset C µ Rn is a convex set if –x + (1 ≠ –)y œ C , ’x , y œ C , ’– œ [0, 1].

Figure: Convex Set

Figure: (a) Illustration of a convex set which looks
somewhat like a deformed circle.

Figure: Non-Convex Set

Figure: (b) Illustration of a non-convex set which
looks somewhat like a boomerang.
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Convex sets - Example

Example (Convex sets)
1. A hyperplane H = {x œ Rn : p

T
x = c} for some p œ Rn, p ”= 0, and c œ R, for example, a

plane in R3, p1x + p2y + p3z = 1.
2. Half space H

+ = {x œ Rn : p
T

x Ø c} or H
≠ = {x œ Rn : p

T
x Æ c}.
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Simplex - Building blocks of hulls

The set of all convex combinations
q3

i=1 ⁄ixi of x1, x2, x3 œ Rn with ⁄1 + ⁄2 + ⁄3 = 1 is the
triangular region determined by x1, x2, x3 (formed between vertices x1, x2, x3).
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Convex Hull

More generally, the set of all convex combinations
qk

i=1 ⁄ixi of k vectors x1, . . . , xk œ Rn is the
convex polyhedral region determined by x1, . . . , xk (the so-called convex Hull, the intersection of
all convex sets containing xi , i = 1, . . . , k).

Figure: Illustration of a tetrahedron that is a
convex combination of four vectors.

Figure: A convex hull of 100 random uniform
points on a sphere.
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Convex Hull

q1

q2

q3

q4

q5

q6

q7

(a) Input.

q1

q2

q3

q4

q5

q6

q7

(b) Output.

Figure: Convex Hull of a set of points in R2.
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Convex Hull

Given an arbitrary set S in Rn, di�erent convex sets can be generated from S. In particular, we
discuss below the convex hull of S.

Definition (Convex hull)
Let S be an arbitrary set in Rn. The convex hull of S, denoted conv(S), is the collection of all
convex combinations of S. In other words, x œ conv(S) if and only if x can be represented as

x =
kÿ

j=1
⁄jxj ,

kÿ

j=1
⁄j = 1,

⁄j Ø 0 for j = 1, . . . , k,

where k is a positive integer and x1, . . . , xk œ S.
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Convex optimization (for completeness)

Convex cost function
Constraints represented by convex functions
Convex constraints =∆ constraint set is convex
æ Convex optimization problem
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