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Two-layer feedforward NN - Example
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Back-propagation - Training an N-layer NN

yk = σ

. . . (σ(
n∑

j=1
vljxj + vl0)

 , k = 1, 2, . . . ,m.

Design choices
Number of hidden layers
Number of neurons in the hidden layers
Activation function

Can the number of hidden layers →∞?
Minimum number of layers?
What happens when number of neurons →∞?
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Vanishing Gradient

What is the value of the derivative of sigmoid activation?
Gradients ’vanish’?
Recall: For sigmoid (σ) activation, σ′ = σ(1− σ)
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Vanishing Gradient

Figure: Norm of gradients used in error
backpropagation

What is the value of the derivative of
sigmoid activation?
Gradients ’vanish’?
Recall: For sigmoid (σ) activation,
σ′ = σ(1− σ)
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Rectified linear units (RelU)

Rectified linear activation function?
f (x) = max(0, x)

Figure: Rectified linear activation (deepai.org)
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Universal approximation theorem (Representative result)

Let C(X ,Y ) denote the set of continuous functions from X → Y .
Let σ ∈ C(R,R)
Note that (σ ◦ x)i = σ(xi ), where σ ◦ x denotes σ applied to each component of x .
Then σ is not polynomial if and only if for every n ∈ N, m ∈ N, compact K ⊆ Rn,
f ∈ C(K ,Rm), ε > 0 there exist k ∈ N, A ∈ Rk×n, b ∈ Rk , C ∈ Rm×k such that
sup
x∈K
‖f (x)− g(x)‖< ε, where g(x) = C · (σ ◦ (A · x + b)).

Allan Pinkus, January 1999. “Approximation theory of the MLP model in neural networks”
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Rounding errors

Representing continuous math on a digital computer is difficult - (infinitely many real
numbers - finite number of bit patterns)
For almost all real numbers, we incur some approximation error when we represent the
number in the computer
This is just the rounding error
Algorithms work in theory yet fail in practice if they are not designed to minimize the
accumulation of rounding error

Underflow occurs when numbers near zero are rounded to zero
Overflow occurs when numbers with large magnitude are approximated as ∞ or −∞
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Conditioning

Conditioning - how rapidly a function changes with respect to small changes in its inputs
Functions that change rapidly when their inputs are perturbed slightly can be problematic
for scientific computation because rounding errors in the inputs can result in large changes
in the output
In a matrix, this is the ratio of the magnitude of the largest and smallest eigenvalue
When this number is large, matrix inversion is particularly sensitive to error in the input
This sensitivity is an intrinsic property of the matrix itself, not the result of rounding error
during matrix inversion
Poorly conditioned matrices amplify pre-existing errors when we multiply by the true matrix
inverse
The error will be compounded further by numerical errors in the inversion process itself
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Gradients and Hessian

Suppose we have a quadratic function (many functions that arise in practice are not
quadratic but can be approximated well as quadratic functions locally)

If such a function has a second derivative of zero, then there is no curvature
It is a perfectly flat line, and its value can be predicted using only the gradient.
If the gradient is 1, then we can make a step of size ε along the negative gradient, and the
cost function will decrease by ε
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Curvature

If the second derivative is negative, the function curves downward
The function will actually decrease by more than ε
If the second derivative is positive, the function curves upward
The cost function can decrease by less than ε
The (directional) second derivative tells us how well we can expect a gradient descent step
to perform
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Ill conditioning (DL, 2016)

Some challenges arise even when optimizing convex functions
Of these, the most prominent is ill-conditioning of the Hessian matrix H

f (θ − α∇f (θ)) ≈ f (θ)− α[∇f (θ)]′∇f (θ) + α2[∇f (θ)]′H(θ)
2 ∇f (θ)

Ill-conditioning of the gradient becomes a problem when the net sum to the cost is
dominated by the term with Hessian
One can monitor the squared gradient norm [∇f (θ)]′∇f (θ) and the [∇f (θ)]′H(θ)

2 ∇f (θ)
term
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Gradient, Hessian, and Ill-conditioning

In many cases, the gradient norm does not shrink significantly throughout learning, but the
second term grows by more than an order of magnitude
The result is that learning becomes very slow despite the presence of a strong gradient
because the learning rate must be shrunk to compensate for even stronger curvature
There are three terms here: the original value of the function, the expected improvement
due to the slope of the function, and the correction we must apply to account for the
curvature of the function
When this last term is too large, the gradient descent step can actually move uphill
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Gradient, Hessian, and Ill-conditioning

When [∇f (θ)]′H[∇f (θ)] is zero or negative,the Taylor series approximation predicts that
increasing α forever will decrease f forever
In practice, the Taylor series is unlikely to remain accurate for large α, so one must resort
to more heuristic choices of α in this case
When [∇f (θ)]′H[∇f (θ)] is positive, solving for the optimal step size that decreases the
Taylor series approximation of the function the most yields

α∗ = [∇f (θ)]′[∇f (θ)]
[∇f (θ)]′H[∇f (θ)]
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Gradient descent

Figure: Conditioning and its
effect

Gradient descent fails to exploit the curvature information
contained in the Hessian matrix
Here we use gradient descent to minimize a quadratic
function f (θ) whose Hessian matrix has condition number 5
This means that the direction of most curvature has five
times more curvature than the direction of least curvature
In this case, the most curvature is in the direction [1, 1], and
the least curvature is in the direction [1,−1]
The red lines indicate the path followed by gradient descent
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Gradient descent

This very elongated quadratic function resembles a long canyon
Gradient descent wastes time repeatedly descending canyon walls because they are the
steepest feature
Since the step size is somewhat too large, it has a tendency to overshoot the bottom of the
function and thus needs to descend the opposite canyon wall on the next iteration
The large positive eigenvalue of the Hessian corresponding to the eigenvector pointed in
this direction indicates that this directional derivative is rapidly increasing
An optimization algorithm based on the Hessian could predict that the steepest direction is
not actually a promising search direction in this context – There are other algorithms that
exploit this information!
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