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Two-layer feedforward NN - Example

L
yi = O'(Z wyzp), i=1,2,...,m.
1=0

n
Z/:O'(ZV/J'XJ'), 1=1,2,3,...,L.

j=0

1 13
ine’ezageg, e =ti— Vi

R e
oL oL 2
= 1o’ (u}) 3 wilo' (Rl

Vj=Vvj—Qa—, S — =
8V/j aV/j )

© Vignesh Narayanan CSCE 790: Neural Networks and Their Applications

September 19, 2023

2/16



Back-propagation - Training an N-layer NN
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@ Design choices

o Number of hidden layers
o Number of neurons in the hidden layers
e Activation function

@ Can the number of hidden layers — co?
@ Minimum number of layers?

@ What happens when number of neurons — c0?
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Vanishing Gradient

@ What is the value of the derivative of sigmoid activation?
@ Gradients 'vanish’?

@ Recall: For sigmoid (o) activation, ¢/ = o(1 — o)
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Vanishing Gradient
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@ Recall: For sigmoid (o) activation,
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Figure: Norm of gradients used in error
backpropagation
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Rectified linear units (RelU)

@ Rectified linear activation function?
e f(x) = max(0,x)

Nonlinearities.
|

— Softplus
4~ — Rectifier

o(x)

Figure: Rectified linear activation (deepai.org)
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https://deepai.org/machine-learning-glossary-and-terms/rectified-linear-units

Universal approximation theorem (Representative result)

Let C(X, Y) denote the set of continuous functions from X — Y.
Let 0 € C(R,R)

Note that (o o x); = o(x;), where ¢ o x denotes o applied to each component of x.

Then o is not polynomial if and only if for every n € N, m € N, compact K C R”,
fe C(K,R™),e >0 there exist k e N, A€ R b e R¥, € € R™K such that
sup||f(x) — g(x)||< &, where g(x) = C- (0o (A-x+ b)).

xeK

Allan Pinkus, January 1999. “Approximation theory of the MLP model in neural networks"
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Rounding errors

@ Representing continuous math on a digital computer is difficult - (infinitely many real
numbers - finite number of bit patterns)

@ For almost all real numbers, we incur some approximation error when we represent the
number in the computer

@ This is just the rounding error

@ Algorithms work in theory yet fail in practice if they are not designed to minimize the
accumulation of rounding error

e Underflow occurs when numbers near zero are rounded to zero
e Overflow occurs when numbers with large magnitude are approximated as co or —oco
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Conditioning

o Conditioning - how rapidly a function changes with respect to small changes in its inputs

@ Functions that change rapidly when their inputs are perturbed slightly can be problematic
for scientific computation because rounding errors in the inputs can result in large changes
in the output

@ In a matrix, this is the ratio of the magnitude of the largest and smallest eigenvalue

When this number is large, matrix inversion is particularly sensitive to error in the input

@ This sensitivity is an intrinsic property of the matrix itself, not the result of rounding error
during matrix inversion

@ Poorly conditioned matrices amplify pre-existing errors when we multiply by the true matrix
inverse

@ The error will be compounded further by numerical errors in the inversion process itself
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Gradients and Hessian

@ Suppose we have a quadratic function (many functions that arise in practice are not
quadratic but can be approximated well as quadratic functions locally)
e If such a function has a second derivative of zero, then there is no curvature
o It is a perfectly flat line, and its value can be predicted using only the gradient.
o If the gradient is 1, then we can make a step of size € along the negative gradient, and the
cost function will decrease by ¢
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Curvature

If the second derivative is negative, the function curves downward
The function will actually decrease by more than ¢
If the second derivative is positive, the function curves upward

The cost function can decrease by less than ¢

e 6 6 o o

The (directional) second derivative tells us how well we can expect a gradient descent step
to perform
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Il conditioning (DL, 2016)

@ Some challenges arise even when optimizing convex functions
@ Of these, the most prominent is ill-conditioning of the Hessian matrix H
! 2 /H(G)
(0 —aVf(0)) =~ f(0)—a[VF(0)]VF()+ a“[VI(8)] TV;‘(Q)

@ lll-conditioning of the gradient becomes a problem when the net sum to the cost is
dominated by the term with Hessian

@ One can monitor the squared gradient norm [V£(0)]'Vf(0) and the [Vf(G)]’@Vf(O)
term
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Gradient, Hessian, and lll-conditioning

@ In many cases, the gradient norm does not shrink significantly throughout learning, but the
second term grows by more than an order of magnitude

@ The result is that learning becomes very slow despite the presence of a strong gradient
because the learning rate must be shrunk to compensate for even stronger curvature

@ There are three terms here: the original value of the function, the expected improvement
due to the slope of the function, and the correction we must apply to account for the
curvature of the function

@ When this last term is too large, the gradient descent step can actually move uphill
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Gradient, Hessian, and lll-conditioning

e When [V£(0)]H[V ()] is zero or negative,the Taylor series approximation predicts that
increasing « forever will decrease f forever

@ In practice, the Taylor series is unlikely to remain accurate for large «, so one must resort
to more heuristic choices of « in this case

e When [V£(0)]'H[Vf(0)] is positive, solving for the optimal step size that decreases the
Taylor series approximation of the function the most yields

- _ [VEON'TVE0)]
[VF(O) HIV(O)]
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Gradient descent

o Gradient descent fails to exploit the curvature information

20 contained in the Hessian matrix

10 @ Here we use gradient descent to minimize a quadratic

o function f(6) whose Hessian matrix has condition number 5

@ This means that the direction of most curvature has five
times more curvature than the direction of least curvature

—10

20 ) . L
@ In this case, the most curvature is in the direction [1,1], and

the least curvature is in the direction [1, —1]

| | 1

-30 -20 =10 0 10 20

Figure: Conditioning and its @ The red lines indicate the path followed by gradient descent
effect
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Gradient descent

@ This very elongated quadratic function resembles a long canyon

@ Gradient descent wastes time repeatedly descending canyon walls because they are the
steepest feature

@ Since the step size is somewhat too large, it has a tendency to overshoot the bottom of the
function and thus needs to descend the opposite canyon wall on the next iteration

@ The large positive eigenvalue of the Hessian corresponding to the eigenvector pointed in
this direction indicates that this directional derivative is rapidly increasing

@ An optimization algorithm based on the Hessian could predict that the steepest direction is
not actually a promising search direction in this context — There are other algorithms that
exploit this information!

© Vignesh Narayanan CSCE 790: Neural Networks and Their Applications September 19, 2023 16 /16



