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Projects

Your overall final course letter grade will be determined by your grades on the following
assessments.

Tentative title due 28th September
Abstract

Homework 1 - Due 28-Sep
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Algorithm (Generic optimization algorithm)
At each iteration k,

θk+1 = θk + αkdk

If ∇f (θk) 6= 0, then the direction dk is chosen so that (∇f (θk))′dk < 0.
The step size αk > 0 is chosen such that f (θk + αkdk) < f (θk).
Principal example:

θk+1 = θk − αkDk∇f (θk), dk = −Dk∇f (θk),

Dk � 0.
(∇f (θk))′ · dk = (∇f (θk))′(−Dk∇f (θk)) < 0.
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Convergence issues

Only convergence to stationary points (critical points, ∇f (θ) = 0) can be guaranteed.
Even convergence to a single limit is difficult to guarantee.
There is a danger of non-convergence if the directions dk tend to be orthogonal to ∇f (θk),
i.e.,

〈
∇f (θk), dk

〉
= 0.
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Step size selection

There are in principle two types of step size selections, called exact and inexact line search.

Definition (Exact line search)
Exactly find the best step size for the current iteration, i.e.,

αk = arg min
α≥0

f (θk + αdk)︸ ︷︷ ︸
h(α)

.

Examples include minimization rule and bisection rule.

Definition (Inexact line search)
Approximately find a step size with essential reduction in the function value.
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Step size selection
x in the figure should be replaced with θ for consistency.

Figure: Orthogonality of gradient to level sets.
© Vignesh Narayanan CSCE 790: Neural Networks and Their Applications September 14, 2023 6 / 29



Step size selection

There are a number of exact and inexact rules for choosing the step size αk in a gradient
method. We list some that are used widely in practice.

1. Minimization Rule: f (θk+1) = f (θk + αkdk),

αk = arg min
α

f (θk + αdk)

αk is such that the cost function f is minimized along the direction dk

2. Limited Minimization Rule (because sometimes you are not allowed to choose α too large)

f (θk + αkdk) = min
α∈[0,s]

f (θk + αdk), s > 0, fixed
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Step size selection

3. Constant Stepsize: αk = s, k = 0, 1, 2, . . . (very simple to implement)
3a. If s is too large, divergence will occur. If s is too small, the rate of convergence may be very

slow
3b. Useful only for problems where an appropriate constant stepsize value is known or can be

determined fairly easily
4 Diminishing step size
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Only critical points are identified in ideal case
Minimizers or saddle points
Local vs Global minimizers
Region of convergence

minimizer

strict local

minimizersminimizer

strict local nonstrict localstrict local

minimizer (global) 

Figure 2.3.Figure: Examples of local minimizers
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Neural network weight selection and training

Figure: Error-credit assignment problem

For a NN to function as desired, their
weights and biases need to be selected
appropriately
It was for many years unknown, how to
use the error to tune the weights of each
layer - ’error-credit assignment problem’
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Lemma: Chain rule

Proposition
Let f : Rk → Rm and g : Rm → Rn be smooth, i.e., C∞. Let h : Rk → Rn be defined by
h(θ) = g(f (θ)). Then

∇h(θ) = ∇f (θ)∇g(f (θ)), ∀θ ∈ Rk .
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Back-propagation - Training a 1-layer NN - Forward pass

Figure: Single layer NN

yi = σ

 n∑
j=1

vijxj + vi0

 , i = 1, 2, . . . , n.

y = σ (Vx) ,

x =

 1
...

xn

 , y =

y1
...

yn

 ,

V =

v10 . . . v1n
... . . . ...

vn0 . . . vnn


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Back-propagation - Training a 1-layer NN - Backward pass

Let the target outputs for each output neuron be denoted as ti (note there is a change in
notation from our previous lectures)
Then the error at each output neuron can be defined as ei = ti − yi

Define the loss function as L(e), where e = (e1, . . . , en)′.
Then, we have

ei = ti − σ

 n∑
j=1

vijxj + vi0

 , i = 1, 2, . . . , n.

e = t − σ (Vx) ,

where t = (t1, . . . , tn)′.
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Back-propagation - Training a 1-layer NN - Backward pass

ei = ti − σ
(∑n

j=1 vijxj + vi0
)
, i = 1, 2, . . . , n.

e = t − σ (Vx)
Loss function - L(e)
Optimization problem -

min
vij∈R,i=1,...,n,j=1,...,n+1

L(e) (1)

min
V∈Rn×n+1

L(e) (2)
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Back-propagation - Training a 1-layer NN - Backward pass

Algorithm (Gradient algorithm)
At each iteration k,

minθ f (θ)
θk+1 = θk + αkdk

If ∇f (θk) 6= 0, then the direction dk is chosen
so that (∇f (θk))′dk < 0.
The step size αk > 0 is chosen such that
f (θk + αkdk) < f (θk).
Principal example:

θk+1 = θk − αkDk∇f (θk),

dk = −Dk∇f (θk)

Algorithm (Training algorithm)
At each iteration k,

minV∈Rn×n+1 L(e)
V k+1 = V k + αkdk

V k+1 = V k − αk∇L(V k),
dk = −Dk∇L(V k), Dk = I

Algorithm (Training algorithm)
At each iteration k,

vk+1
ij = vk

ij − αk∇L(vk
ij ),
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Back-propagation - Training a 1-layer NN - Example

ei = ti − σ
(∑n

j=1 vijxj + vi0
)
, i = 1, 2, . . . , n.

Let ∑n
j=1 vijxj + vi0 = z

vk+1
ij = vk

ij − αk∇L(vk
ij ), L is the loss function

Chain rule

∇L(vk
ij ) = ∂L

∂vij
= ∂L
∂ei

∂ei
∂vij

= ∂L
∂ei

∂ei
∂yi

∂yi
∂vij

= ∂L
∂ei

∂ei
∂yi

∂yi
∂σ

∂σ

∂vij
= ∂L
∂ei

∂ei
∂yi

∂yi
∂σ

∂σ

∂z
∂z
∂vij

(3)
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Two-layer feedforward NN - Forward pass

Figure: Two-layer feedforward NN

Let the output of the hidden layer be

z1
z2
z3


z1

z2
z3

 = σ

v10 + v11x1 + v12x2
v20 + v21x1 + v22x2
v30 + v31x1 + v32x2

 =

σ


v10 v11 v12

v20 v21 v22
v30 v31 v32


 1

x1
x2


 = σ(Vx)

zl = σ(∑2
j=0 vljxj), l = 1, 2, 3.
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Two-layer feedforward NN - Forward pass

Figure: Two-layer feedforward NN

Let the output of the NN be y =
(

y1
y2

)

(
y1
y2

)
= σ

(
w10 + w11z1 + w12z2 + w13z3
w20 + w21z1 + w22z2 + w23z3

)
=

σ


(

w10 w11 w12 w13
w20 w21 w22 w23

)
1
z1
z2
z3


 = σ(Wz)

yi = σ(∑3
l=0 wil zl ), i = 1, 2.
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Two-layer feedforward NN - Forward pass - Simplified notations

zl = σ(∑2
j=0 vljxj), l = 1, 2, 3.

yi = σ(∑3
l=0 wil zl ), i = 1, 2.

u2
i = ∑3

l=0 wil zl

u1
l = ∑2

j=0 vljxj

yi = σ(u2
i ) and zl = σ(u1

l )

© Vignesh Narayanan CSCE 790: Neural Networks and Their Applications September 14, 2023 19 / 29



Two-layer feedforward NN - Derivatives

∂yi
∂wil

= σ′(u2
i )zl

∂yi
∂zl

= σ′(u2
i )wil

∂zl
∂vlj

= σ′(u1
l )xj

∂zl
∂xj

= σ′(u2
i )vlj

Example activation function : Sigmoid activation

σ(s) = 1
1 + exp−s

Derivative:
σ′(s) = σ(s)(1− σ(s))
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Two-layer feedforward NN - Backward pass

Back-propagation rules (dropping iteration index k for simplicity)
wil = wil − α ∂L

∂wil

vlj = vlj − α ∂L
∂vlj

L here is the loss/cost function
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Two-layer feedforward NN - Backward pass - Example - Quadratic error

Consider the following expression for cost
L = 1

2e′e = 1
2
∑2

i=1 e2
i

ei = ti − yi

ti is the target/desired output
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Two-layer feedforward NN - Backward pass - Example - Required gradients

∂L
∂wil

= ∂L
∂u2

i

∂u2
i

∂wil
= [ ∂L

∂ei
∂ei
∂yi

∂yi
∂u2

i
] ∂u2

i
∂wil

∂L
∂u2

i
= −σ′(u2

i )ei

∂L
∂wil

= −zl [σ′(u2
i )ei ]
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Two-layer feedforward NN - Backward pass - Example - Required gradients

∂L
∂vlj

= ∂L
∂u1

l

∂u1
l

∂vlj
=
[∑2

i=1
∂L
∂u2

i

∂u2
i

∂zl
∂zl
∂u1

l

]
∂u1

l
∂vlj

∂L
∂u1

l
= −σ′(u1

l )∑2
i=1 wil [σ′(u2

i )ei ]
∂L
∂vlj

= −xj [σ′(u1
l )∑2

i=1 wil [σ′(u2
i )ei ]]
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Two-layer feedforward NN - Backward pass - Example - Simplification

These equations can be considerably simplified by introducing the notion of a backward
recursion through the network
Define the backpropagated error for layers 2 and 1 respectively as

δ2
i = − ∂L

∂u2
i

= σ′(u2
i )ei

δ1
l = ∂L

∂u1
l

= σ′(u1
l )
∑2

i=1 wilδ
2
i

Assuming sigmoid activation function at each layer, we have
δ2

i = yi (1− yi )ei
δ1

l = zl (1− zl )
∑2

i=1 wilδ
2
i
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Improvements to gradient descent?

Several improvements can be made to correct deficiencies in gradient descent NN training
algorithms
These can be applied at each layer of a multilayer NN when using backpropagation tuning
Deficiencies are:

1 Gradient-based minimization algorithms provide only a local minimum
2 Verification that gradient descent decreases the cost function is based on an approximation

Improvements in performance are given by:
1 selecting better initial conditions
2 using learning with momentum
3 using an adaptive learning rate α.
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Learning with momentum

An improved version of gradient descent is given by the Momentum Gradient Algorithm
Example:

V (k + 1) = βV (k)− α(1− β) ∂L(k)
∂V (k)

β < 1 is a positive momentum parameter and α < 1 is the positive learning rate
β is generally selected near 1 (e.g. 0.95)
This corresponds in discrete-time dynamical system terms to moving the system pole from
z = 1 to the interior of the unit circle, and adds stability in a manner similar to friction
effects in mechanical systems
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Challenges in training NN (see Ch. 7 and 8 in DL, 2016))

Optimization in general is an extremely difficult task
In ML, the difficulty in optimization is generally avoided by carefully designing the objective
function and constraints to ensure that the optimization problem is convex
When training neural networks, we must confront the general nonconvex case
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Ill conditioning

Some challenges arise even when optimizing convex functions
Of these, the most prominent is ill-conditioning of the Hessian matrix H

f (θ − α∇f (θ)) ≈ f (θ)− α[∇f (θ)]′∇f (θ) + α2[∇f (θ)]′H(θ)
2 ∇f (θ)

Ill-conditioning of the gradient becomes a problem when the net sum to the cost is
dominated by the term with Hessian
One can monitor the squared gradient norm [∇f (θ)]′∇f (θ) and the [∇f (θ)]′H(θ)

2 ∇f (θ)
term.
In many cases, the gradient norm does not shrink significantly throughout learning, but the
second term grows by more than an order of magnitude.
The result is that learning becomes very slow despite the presence of a strong gradient
because the learning rate must be shrunk to compensate for even stronger curvature
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