CSCE 790: Neural Networks and Their Applications AIISC and Dept. Computer Science and Engineering Email: vignar@sc.edu

© Vignesh Narayanan

September 12, 2023

© Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-34-0) September 12, 2023 1 / 35

 Ω

- **o** ML Functional view of models
- Models Parametric models
- Multi-layer feedforward neural network
- Learning paradigm Supervised learning
	- **•** Classification
	- Regression

E

 299

化重新润滑脂

4 0 8 → 母

Math Recap

- Set and operations on set (e.g., Cartesian product)
- \bullet Relation \rightarrow Functions
- \bullet Vector space $(V, F, +, .)$
- Span
- **•** Linear independence and Basis
- Inner product
- Norm

- 39

 299

化重新润滑脂

← ロ → → ← 何 →

Example: Regression

- \bullet $\{(x, y)\}\right$ Given set of input-output pairs
- $\bullet x \in \Omega \subseteq \mathbb{R}$ and $y \in \mathbb{R}$
- Prediction function $f: \Omega \to \mathbb{R}$
- \bullet Input space $(\Omega, \mathbb{R}, +, .)$
- Through ML we are searching for a function in the function $space(?)$ - a set of (continuous?) functions from $\Omega \to \mathbb{R}$

つへへ

Example: Regression

Figure: Input-output data points in a 3-D space

- \bullet $\{(x, y)\}\right$ Given set of input-output pairs
- $x \in \Omega \subseteq \mathbb{R}^2$ and $y \in \mathbb{R}$
- Prediction function $f: \Omega \to \mathbb{R}$
- **•** Input space $(Ω, ℝ, +, .)$
- Here we are searching for a function in the function space - a set of continuous functions from $\Omega \to \mathbb{R}$

 Ω

- **•** Linear vs Nonlinear functions
- Optimization problems (Cost function, Decision variables, and Constraint set)
- Taylor's formula and its relevance

E

 299

医毛囊 医牙骨

← ロ ▶ → イ 同 ▶

- Taylor's expansion provides a representation of function as infinite sum of terms expressed as the functions derivatives at a single point
- Mean value theorem provides a way to stop the expansion after the first derivative
- Theorem of Extended value of mean provides a way to stop the expansion after the second derivative
- If $f''(\theta) > 0$, $\forall \theta$, and $f'(\theta^*) = 0$,

$$
\implies f(\theta) = f(\theta^*) + 0 + \text{ a positive number } \forall \theta \neq \theta^*
$$

\n
$$
\implies f(\theta) > f(\theta^*) \quad \forall \theta \neq \theta^*
$$

\n
$$
\implies \theta^* \text{ is the minimizer of } f(\theta)
$$

E

 Ω

イロト イ押ト イヨト イヨト

Minimizers

- **•** Minimizers
- **.** Local vs Global minimizers

Figure 2.3. Figure: Examples of local minimizers

© Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-0-0) September 12, 2023 8 / 35

造

 299

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

- Symmetric matrices
- **•** Positive definiteness
- Eigen values and spectral radius
- Notion of 'local' or 'neighborhood' (To be defined)

目

 298

 \rightarrow \equiv

 \rightarrow

4 0 8

Definition (Derivative)

Let $\Theta \subset \mathbb{R}$ and let $f : \Theta \to \mathbb{R}$ be a real-valued function. Suppose that Θ contains a neighborhood of the point *θ*. We define the derivative of f at *θ* by

$$
f'(\theta) = \lim_{\alpha \to 0} \frac{f(\theta + \alpha) - f(\theta)}{\alpha}
$$

provided that the limit exists. In that case we say that f is differentiable at *θ*.

 290

医毛囊 医牙骨

Visualization (1-D)

[Derivatives](#page-9-0)

The definition above does not work when we pass from functions of single real variable to functions of several real variables. Now when $\Theta \subset \mathbb{R}^n$ and $f: \Theta \to \mathbb{R}^m$, we have

We do not know what it means to divide by a vector and hence should seek another definition. Modify the definition of a derivative to accommodate vector-valued functions of several real variables.

- 3

 298

 $\mathbf{A} \cdot \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{A} \cdot \mathbf{B} \cdot \mathbf{A}$

Definition (Directional derivative)

Let $\Theta\subset\mathbb{R}^n$ and $f:\Theta\to\mathbb{R}^m$. Suppose that Θ contains a neighborhood of θ . Given $d\in\mathbb{R}^n$ with $d \neq 0$, define

$$
f'(\theta; d) = \lim_{\alpha \to 0} \frac{f(\theta + \alpha d) - f(\theta)}{\alpha},
$$

provided the limit exists. It is called the directional derivative of f at θ with respect to d.

 290

 \rightarrow \pm

[Derivatives](#page-9-0)

Definition (Partial derivative)

If

$$
f'(\theta; e_i) = \lim_{\alpha \to 0} \frac{f(\theta + \alpha e_i) - f(\theta)}{\alpha}
$$

exists it is called the *i*th partial derivative of f at θ , denoted $\frac{\partial f(\theta)}{\partial \theta_i}$

Definition (Gradient)

Assume that
$$
\frac{\partial f(\theta)}{\partial \theta_i}
$$
 exists $\forall i$. The gradient of f at θ is defined as\n
$$
\nabla f(\theta) = \begin{bmatrix} \frac{\partial f(\theta)}{\partial \theta_1} \\ \vdots \\ \frac{\partial f(\theta)}{\partial \theta_n} \end{bmatrix} \quad \text{and } \nabla f(\theta) = (Df(\theta))'.
$$

© Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-0-0) September 12, 2023 14/35

.

[Derivatives](#page-9-0)

Definition (Hessian) Suppose that $\frac{\partial f(\theta)}{\partial \theta}$ $\frac{\partial^2 U(t)}{\partial \theta_i} \in C^{\infty}$ is a continuously differentiable function of θ . The Hessian matrix of *f* at $\theta \in \Theta$ is given by $H(\theta) = \nabla^2 f(\theta) =$ $\sqrt{ }$ $\frac{\partial^2 f(\theta)}{\partial}$ $\partial^2 f(\theta)$ *∂θ*1*∂θ*¹ $\partial^2 f(\theta)$ $\frac{\partial^2 f(\theta)}{\partial \theta_1 \partial \theta_2}$ · · · $\frac{\partial^2 f(\theta)}{\partial \theta_1 \partial \theta_n}$ *∂θ*1*∂θ*ⁿ $\partial^2 f(\theta)$ *∂θ*2*∂θ*¹ $\partial^2 f(\theta)$ $\frac{\partial^2 f(\theta)}{\partial \theta_2 \partial \theta_2}$ · · · $\frac{\partial^2 f(\theta)}{\partial \theta_2 \partial \theta_n}$ *,∂θ*₁ *∂θ*₂*∂θ*₂ *∂θ*₂*∂θ_n*
: : : : : : *∂θ*n*∂θ*¹ $\partial^2 f(\theta)$ $\frac{\partial^2 f(\theta)}{\partial \theta_n \partial \theta_2}$ · · · $\frac{\partial^2 f(\theta)}{\partial \theta_n \partial \theta_n}$ *∂θ*n*∂θ*ⁿ 1 ∈ S n *,* since $\frac{\partial^2 f(\theta)}{\partial \theta \cdot \partial \theta}$. $\frac{\partial^2 f(\theta)}{\partial \theta_i \partial \theta_j} = \frac{\partial^2 f(\theta)}{\partial \theta_j \partial \theta_i}$ *∂θ*j*∂θ*ⁱ for i*,* j = 1*, . . . ,* n. © Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-0-0) September 12, 2023 15 / 35

Example

Let $f:\mathbb{R}^2\to\mathbb{R}$ be defined by $f(\theta_1,\theta_2)=\theta_1^3-12\theta_1\theta_2+8\theta_2^3$. Let $\theta=(\theta_1,\theta_2)$, and then

$$
\nabla f(\theta) = \begin{bmatrix} \frac{\partial f(\theta)}{\partial \theta_1} \\ \frac{\partial f(\theta)}{\partial \theta_2} \end{bmatrix} = \begin{bmatrix} 3\theta_1^2 - 12\theta_2 \\ -12\theta_1 + 24\theta_2^2 \end{bmatrix}
$$

and

$$
H(\theta) = \left[\begin{array}{cc} 6\theta_1 & -12 \\ -12 & 48\theta_2 \end{array} \right].
$$

 299

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶ │ 경

[Derivatives](#page-9-0)

Definition (Gradient matrix)

If $\Theta\subset\mathbb{R}^n$ and $f:\Theta\to\mathbb{R}^m$ is a vector-valued function, i.e., $f(\theta)=(f_1(\theta),\ldots,f_m(\theta))'$, then f is called differentiable if f_i is differentiable for all $i=1,\ldots,m.$ The gradient matrix of f is the $n \times m$ matrix

$$
\nabla f(\theta) = \left[\nabla f_1(\theta) \middle| \cdots \middle| \nabla f_m(\theta) \right]_{n \times m} = (J(\theta))'
$$

where $J(\theta)$ is the Jacobian of f.

 \rightarrow \pm

 200

Example

Let $f:\mathbb{R}^2\to\mathbb{R}$ be defined by $f(\theta_1,\theta_2)=\theta_1\theta_2.$ The directional derivatives of f at $a=(a_1,a_2)$ with respect to

\n- $$
d_1 = (1, 0)'
$$
 is\n $f'(a; d_1) = \lim_{\alpha \to 0} \frac{(a_1 + \alpha)a_2 - a_1a_2}{\alpha} = a_2.$ \n
\n- $d_2 = (1, 2)'$ is\n $f'(a; d_2) = \lim_{\alpha \to 0} \frac{(a_1 + \alpha)(a_2 + 2\alpha) - a_1a_2}{\alpha} = 2a_1 + a_2.$ \n
\n

E

 299

 \rightarrow 3 \mp 3 3 \mp 3

 \leftarrow

Definition (Open ball)

For all norms $\|\cdot\|$ in \mathbb{R}^n and for any $\varepsilon>0$, we define an open ball or ε -neighborhood of $\theta_0\in\mathbb{R}^n$ by $B_{\varepsilon}(\theta_0) = B(\theta_0, \varepsilon) = \{ \theta \in \mathbb{R}^n : ||\theta - \theta_0|| < \varepsilon \}.$

Example

The unit ball $B(0,1)$ in \mathbb{R}^2 contains all the points inside a circle of radius one centered at the origin.

 \cdots

 290

Theorem (Extended M.V.T: Taylor's theorem, second order expansions)

Let $B(\theta, r)$ be an open ball centered at $\theta \in \mathbb{R}^n$ with radius r. Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable (\mathcal{C}^2) over $\mathcal{B}(\theta, r)$. Then

1 For all y such that $\theta + y \in B(\theta, r)$, i.e., $||y|| < r$, there exists an $\alpha \in [0, 1]$ such that

$$
f(\theta + y) = f(\theta) + y'\nabla f(\theta) + \frac{1}{2}y'\nabla^2 f(\theta + \alpha y)y.
$$

2 For all y such that $\theta + y \in B(\theta, r)$ there holds

$$
f(\theta + y) = f(\theta) + y'\nabla f(\theta) + \frac{1}{2}y'\nabla^2 f(\theta)y + o(||y||^2).
$$

 200

[Local vs. Global minima](#page-20-0)

Definition

Let $\mathcal{F}=\{\theta\in\mathbb{R}^n\ |\ g_i(\theta)\leq 0, h_j(\theta)=0, i=1,\ldots,m, \ j=1,\ldots,\ell\}$ be the feasible region of a NLP.

- $\mathbf{P} \cdot \theta^* \in \mathcal{F} \subset \mathbb{R}^n$ is a local minimum of the NLP if there exists $\varepsilon > 0$ such that $f(\theta^*) \leq f(\theta)$ for any $\theta \in B(\theta, \varepsilon) \cap \mathcal{F}$.
- $e^a \theta^* \in \mathcal{F}$ is a strict local minimum of the NLP if there exists $\varepsilon > 0$ such that $f(\theta^*) < f(\theta)$ for any $\theta \in B(\theta,\varepsilon) \cap \mathcal{F}$, $\theta \neq \theta^*$.
- **3** $\theta^* \in \mathcal{F}$ is a global minimum of the NLP if $f(\theta^*) \leq f(y)$ for $\forall y \in \mathcal{F}$.
- $\theta^*\in\mathcal{F}$ is a strict global minimum of the NLP if $f(\theta^*)< f(y)$ for $\forall y\in\mathcal{F},\ y\neq\theta^*.$

 Ω

イロト イ何 トイヨト イヨト ニヨー

Now, we examine algorithms for unconstrained optimization, which are motivated by moving from a point θ along a descent direction d with step size $\alpha>0$ and repeating until $\nabla f(\theta^*)=0.$ A first order approximation can be used. The central idea is based on Taylor's expansion

$$
f(\theta + \alpha d) \approx f(\theta) + \alpha (\nabla f(\theta))' d,
$$

and if $(\nabla f(\theta))^{\prime}d < 0$, then $f(\theta + \alpha d) < f(\theta)$ for some $\alpha > 0$. Let's start with an interesting and fundamental observation of descent directions.

 Ω

◆ロト → 何ト → ヨト → ヨト

Proposition (Descent directions)

Let $f: \mathbb{R}^n \to \mathbb{R}$ be differentiable at θ . If there exists a $d \in \mathbb{R}^n$ such that $(\nabla f(\theta))'d < 0$, then $∀α > 0$ sufficiently small, $f(θ + αd) < f(θ)$. We call d the descent direction and $α$ the step size.

 290

医毛囊 医牙骨

Definition (Level Set)

A level set of a real-valued function f of *n* variables is a set of the form

$$
L_c(f) = \{(\theta_1,\ldots,\theta_n)' | f(\theta_1,\ldots,\theta_n) = c\}.
$$

Note, conventionally, associated with a convex function f one can define a level set, sometimes called a lower-level set,

$$
S_{\alpha} = \{ \theta \in S \, | \, f(\theta) \leq \alpha \}, \quad \alpha \in \mathbb{R},
$$

to differentiate it from the *upper-level set* $\{\theta \in S \mid f(\theta) \geq \alpha\}$.

 200

[Unconstrained Optimization](#page-21-0)

Figure: The level sets of "Peaks"

© Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-0-0) September 12, 2023 25/35

←⊏

 290

[Unconstrained Optimization](#page-21-0)

In the Figure,

$$
z = f(x, y) = 3(1 - x)^{2} e^{-x^{2} - (y+1)^{2}}
$$

- 10($\frac{x}{5}$ - x³ - y⁵)e^{-x²-y²} - $\frac{1}{3}$ e^{-(x+1)²-y²},

is a function of two variables, obtained by translating and scaling Gaussian distributions.

- 3

 299

 $A \Box B$ $A \Box B$ $A \Box B$ $A \Box B$ $A \Box B$

Gradient Methods

 \bullet **Motivation:** Decrease $f(\theta)$ until $\nabla f(\theta^*) = 0$ based on

 $f(\theta + \alpha d) \approx f(\theta) + \alpha (\nabla f(\theta))' d.$

If $(\nabla f(\theta))^{\prime} d < 0$, then $f(\theta + \alpha d) < f(\theta)$ for small $\alpha > 0$.

² **Procedure:** We start at some point *θ* 0 (an **initial guess**) and successively generate vectors θ^1 , θ^2 , \ldots , such that f is decreased at each iteration, that is, $f(\theta^{k+1}) < f(\theta^k)$ for all $k = 0, 1, 2, \ldots$.

KED KARD KED KED E VOOR

[Algorithms for Unconstrained Optimization](#page-27-0)

Figure: Iterative Descent.

© Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-0-0) September 12, 2023 29 / 35

造

 299

→ 御 ▶ → 君 ▶ → 君 ▶

4 0 8

[Gradient-based Iterative Algorithms \(Generic\)](#page-29-0)

Proposition (Gradient is orthogonal to level set of a function)

The gradient of f at a point is perpendicular to the level set of f at that point.

© Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-0-0) September 12, 2023 30 / 35

目

 Ω

化重新润滑

4 **E** F

[Gradient-based Iterative Algorithms \(Generic\)](#page-29-0) **Remark:**

Therefore, if the direction d makes an angle with $\nabla f(\theta)$ that is greater than 90 $^{\circ}$, that is,

 $(\nabla f(\theta))' d < 0,$

there is an interval $(0, \delta)$ of step sizes such that

\n- •
$$
f(\theta + \alpha d) < f(\theta)
$$
, $\forall \alpha \in (0, \delta)$,
\n- • $(\nabla f(\alpha))' \cdot d$
\n

$$
\cos(\theta) = \frac{(\nabla f(\theta))' \cdot d}{\|\nabla f(\theta)\| \cdot \|d\|} < 0 \implies \theta > 90^\circ.
$$

E

 298

イロト イ押ト イヨト イヨ

[Gradient-based Iterative Algorithms \(Generic\)](#page-29-0)

Figure: Orthogonality of Gradient to Level Set[s.](#page-30-0)

© Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-0-0) September 12, 2023 32 / 35

 290

 \blacksquare

[Gradient-based Iterative Algorithms \(Generic\)](#page-29-0)

Algorithm (Generic algorithm)

At each iteration k,

- $\theta^{k+1} = \theta^k + \alpha^k d^k$
- If $\nabla f(\theta^k) \neq 0$, then the direction d^k is chosen so that $(\nabla f(\theta^k))^{\prime}\mathsf{d}^k < 0.$
- The step size $\alpha^k > 0$ is chosen such that $f(\theta^k + \alpha^k d^k) < f(\theta^k)$.
- Principal example:

$$
\theta^{k+1} = \theta^k - \alpha^k D^k \nabla f(\theta^k), \quad d^k = -D^k \nabla f(\theta^k),
$$

\n- $$
D^k > 0
$$
.
\n- $(\nabla f(\theta^k))' \cdot d^k = (\nabla f(\theta^k))'(-D^k \nabla f(\theta^k)) < 0$.
\n

 200

 \triangleright \rightarrow \equiv

 \rightarrow \rightarrow

Neural network weight selection and training

Figure: Error-credit assignment problem

- For a NN to function as desired, their weights and biases need to be selected appropriately
- It was for many years unknown, how to use the error to tune the weights of each layer - 'error-credit assignment problem'

 Ω

Proposition

Let $f:\R^k\to\R^m$ and $g:\R^m\to\R^n$ be smooth, i.e., C^∞ . Let $h:\R^k\to\R^n$ be defined by $h(\theta) = g(f(\theta))$. Then $\nabla h(\theta) = \nabla f(\theta) \nabla g(f(\theta)), \quad \forall \theta \in \mathbb{R}^k.$

←□

 298