CSCE 790: Neural Networks and Their Applications AIISC and Dept. Computer Science and Engineering Email: vignar@sc.edu

© Vignesh Narayanan

September 12, 2023

© Vignesh Narayanan

CSCE 790: Neural Networks and Their Applications

September 12, 2023 1 / 35

- ML Functional view of models
- Models Parametric models
- Multi-layer feedforward neural network
- Learning paradigm Supervised learning
 - Classification
 - Regression

3

Math Recap

- Set and operations on set (e.g., Cartesian product)
- $\bullet \ \ {\sf Relation} \ \rightarrow \ {\sf Functions}$
- Vector space (V, F, +, .)
- Span
- Linear independence and Basis
- Inner product
- Norm

- 34

(4) E > (4) E >

A I > A A I >
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example: Regression

- $\{(x, y)\}$ Given set of input-output pairs
- $x \in \Omega \subseteq \mathbb{R}$ and $y \in \mathbb{R}$
- Prediction function $f:\Omega \to \mathbb{R}$
- Input space $(\Omega, \mathbb{R}, +, .)$
- Through ML we are searching for a function in the function space(?) a set of (continuous?) functions from $\Omega \to \mathbb{R}$

Example: Regression

Figure: Input-output data points in a 3-D space

- $\{(x, y)\}$ Given set of input-output pairs
- $x \in \Omega \subseteq \mathbb{R}^2$ and $y \in \mathbb{R}$
- Prediction function $f:\Omega \to \mathbb{R}$
- Input space $(\Omega, \mathbb{R}, +, .)$
- Here we are searching for a function in the function space a set of continuous functions from $\Omega \to \mathbb{R}$

- Linear vs Nonlinear functions
- Optimization problems (Cost function, Decision variables, and Constraint set)
- Taylor's formula and its relevance

3

- Taylor's expansion provides a representation of function as infinite sum of terms expressed as the functions derivatives at a single point
- Mean value theorem provides a way to stop the expansion after the first derivative
- Theorem of Extended value of mean provides a way to stop the expansion after the second derivative
- If f''(heta) > 0, $\forall \, heta$, and $f'(heta^*) = 0$,

$$\implies f(\theta) = f(\theta^*) + 0 + \text{a positive number} \quad \forall \ \theta \neq \theta^*$$
$$\implies f(\theta) > f(\theta^*) \quad \forall \ \theta \neq \theta^*$$
$$\implies \theta^* \text{ is the minimizer of } f(\theta)$$

- 34

イモトイモト

Minimizers

- Minimizers
- Local vs Global minimizers

Figure: Examples of local minimizers

CSCE 790: Neural Networks and Their Applications

Э

(a) < (a) < (b) < (b)

- Symmetric matrices
- Positive definiteness
- Eigen values and spectral radius
- Notion of 'local' or 'neighborhood' (To be defined)

3

< 3 ×

Definition (Derivative)

Let $\Theta \subset \mathbb{R}$ and let $f : \Theta \to \mathbb{R}$ be a real-valued function. Suppose that Θ contains a neighborhood of the point θ . We define the derivative of f at θ by

$$f'(\theta) = \lim_{lpha o 0} rac{f(heta + lpha) - f(heta)}{lpha}$$

provided that the limit exists. In that case we say that f is differentiable at θ .

(4) E (4) E (4)

Visualization (1-D)

Derivatives

The definition above does not work when we pass from functions of single real variable to functions of several real variables. Now when $\Theta \subset \mathbb{R}^n$ and $f : \Theta \to \mathbb{R}^m$, we have

We do not know what it means to divide by a vector and hence should seek another definition. Modify the definition of a derivative to accommodate vector-valued functions of several real variables.

- 34

(4) E > (4) E >

Definition (Directional derivative)

Let $\Theta \subset \mathbb{R}^n$ and $f : \Theta \to \mathbb{R}^m$. Suppose that Θ contains a neighborhood of θ . Given $d \in \mathbb{R}^n$ with $d \neq 0$, define

$$f'(heta; oldsymbol{d}) = \lim_{lpha o 0} rac{f(heta + lpha oldsymbol{d}) - f(heta)}{lpha},$$

provided the limit exists. It is called the directional derivative of f at θ with respect to d.

Derivatives

Definition (Partial derivative)

lf

$$f'(\theta; e_i) = \lim_{\alpha \to 0} \frac{f(\theta + \alpha e_i) - f(\theta)}{\alpha}$$

exists it is called the *i*th partial derivative of *f* at θ , denoted $\frac{\partial f(\theta)}{\partial \theta_i}$

Definition (Gradient)

Assume that
$$\frac{\partial f(\theta)}{\partial \theta_i}$$
 exists $\forall i$. The gradient of f at θ is defined as

$$\nabla f(\theta) = \begin{bmatrix} \frac{\partial f(\theta)}{\partial \theta_1} \\ \vdots \end{bmatrix} \quad \text{and } \nabla f(\theta) = (Df(\theta))'.$$

 $\frac{\partial f(\theta)}{\partial \theta_n}$

CSCE 790: Neural Networks and Their Applications

Derivatives

Definition (Hessian) Suppose that $\frac{\partial f(\theta)}{\partial \theta_i} \in C^{\infty}$ is a continuously differentiable function of θ . The Hessian matrix of f at $\theta \in \Theta$ is given by ven by $H(\theta) = \nabla^2 f(\theta) = \begin{bmatrix} \frac{\partial^2 f(\theta)}{\partial \theta_1 \partial \theta_1} & \frac{\partial^2 f(\theta)}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 f(\theta)}{\partial \theta_1 \partial \theta_n} \\ \frac{\partial^2 f(\theta)}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 f(\theta)}{\partial \theta_2 \partial \theta_2} & \cdots & \frac{\partial^2 f(\theta)}{\partial \theta_2 \partial \theta_n} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix} \in S^n,$ $\left[\frac{\partial^2 f(\theta)}{\partial \theta_n \partial \theta_1} \quad \frac{\partial^2 f(\theta)}{\partial \theta_n \partial \theta_2} \quad \cdots \quad \frac{\partial^2 f(\theta)}{\partial \theta_n \partial \theta_n} \right]$ since $\frac{\partial^2 f(\theta)}{\partial \theta_i \partial \theta_i} = \frac{\partial^2 f(\theta)}{\partial \theta_i \partial \theta_i}$ for $i, j = 1, \dots, n$.

Example

Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(\theta_1, \theta_2) = \theta_1^3 - 12\theta_1\theta_2 + 8\theta_2^3$. Let $\theta = (\theta_1, \theta_2)$, and then

$$\nabla f(heta) = \left[egin{array}{c} rac{\partial f(heta)}{\partial heta_1} \ rac{\partial f(heta)}{\partial heta_2} \end{array}
ight] = \left[egin{array}{c} 3 heta_1^2 - 12 heta_2 \ -12 heta_1 + 24 heta_2^2 \end{array}
ight]$$

and

$$H(heta) = \left[egin{array}{cc} 6 heta_1 & -12 \ -12 & 48 heta_2 \end{array}
ight].$$

Derivatives

Definition (Gradient matrix)

If $\Theta \subset \mathbb{R}^n$ and $f : \Theta \to \mathbb{R}^m$ is a vector-valued function, i.e., $f(\theta) = (f_1(\theta), \dots, f_m(\theta))'$, then f is called differentiable if f_i is differentiable for all $i = 1, \dots, m$. The gradient matrix of f is the $n \times m$ matrix

$$abla f(heta) = \left[\begin{array}{c|c}
abla f_1(heta) & \cdots &
abla f_m(heta) \end{array} \right]_{n \times m} = (J(heta))'$$

where $J(\theta)$ is the Jacobian of f.

Example

Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(\theta_1, \theta_2) = \theta_1 \theta_2$. The directional derivatives of f at $a = (a_1, a_2)$ with respect to

•
$$d_1 = (1,0)'$$
 is
 $f'(a; d_1) = \lim_{\alpha \to 0} \frac{(a_1 + \alpha)a_2 - a_1a_2}{\alpha} = a_2.$
• $d_2 = (1,2)'$ is
 $f'(a; d_2) = \lim_{\alpha \to 0} \frac{(a_1 + \alpha)(a_2 + 2\alpha) - a_1a_2}{\alpha} = 2a_1 + a_2.$

- 34

イロト 不得下 イヨト イヨト

Definition (Open ball)

For all norms $\|\cdot\|$ in \mathbb{R}^n and for any $\varepsilon > 0$, we define an open ball or ε -neighborhood of $\theta_0 \in \mathbb{R}^n$ by $B_{\varepsilon}(\theta_0) = B(\theta_0, \varepsilon) = \{\theta \in \mathbb{R}^n : \|\theta - \theta_0\| < \varepsilon\}.$

Example

The unit ball B(0,1) in \mathbb{R}^2 contains all the points inside a circle of radius one centered at the origin.

4 E K 4 E K

Theorem (Extended M.V.T: Taylor's theorem, second order expansions)

Let $B(\theta, r)$ be an open ball centered at $\theta \in \mathbb{R}^n$ with radius r. Let $f : \mathbb{R}^n \to \mathbb{R}$ be twice continuously differentiable (C^2) over $B(\theta, r)$. Then

• For all y such that $\theta + y \in B(\theta, r)$, i.e., ||y|| < r, there exists an $\alpha \in [0, 1]$ such that

$$f(\theta + y) = f(\theta) + y'\nabla f(\theta) + \frac{1}{2}y'\nabla^2 f(\theta + \alpha y)y$$

2 For all y such that $\theta + y \in B(\theta, r)$ there holds

$$f(heta+y)=f(heta)+y'
abla f(heta)+rac{1}{2}y'
abla^2 f(heta)y+o(\|y\|^2).$$

4 E K 4 E K

Local vs. Global minima

Definition

Let $\mathcal{F} = \{\theta \in \mathbb{R}^n \mid g_i(\theta) \le 0, h_j(\theta) = 0, i = 1, ..., m, j = 1, ..., \ell\}$ be the feasible region of a NLP.

- θ* ∈ F ⊂ ℝⁿ is a local minimum of the NLP if there exists ε > 0 such that f(θ*) ≤ f(θ) for any θ ∈ B(θ, ε) ∩ F.
- Ø^{*} ∈ F is a strict local minimum of the NLP if there exists ε > 0 such that f(θ^{*}) < f(θ) for any θ ∈ B(θ, ε) ∩ F, θ ≠ θ^{*}.
- **③** $\theta^* \in \mathcal{F}$ is a global minimum of the NLP if $f(\theta^*) \leq f(y)$ for $\forall y \in \mathcal{F}$.
- $\theta^* \in \mathcal{F}$ is a strict global minimum of the NLP if $f(\theta^*) < f(y)$ for $\forall y \in \mathcal{F}$, $y \neq \theta^*$.

イロト 不得 トイヨト イヨト 二日

Now, we examine algorithms for unconstrained optimization, which are motivated by moving from a point θ along a descent direction d with step size $\alpha > 0$ and repeating until $\nabla f(\theta^*) = 0$. A first order approximation can be used. The central idea is based on Taylor's expansion

$$f(\theta + \alpha d) \approx f(\theta) + \alpha (\nabla f(\theta))' d,$$

and if $(\nabla f(\theta))'d < 0$, then $f(\theta + \alpha d) < f(\theta)$ for some $\alpha > 0$. Let's start with an interesting and fundamental observation of descent directions.

Proposition (Descent directions)

Let $f : \mathbb{R}^n \to \mathbb{R}$ be differentiable at θ . If there exists a $d \in \mathbb{R}^n$ such that $(\nabla f(\theta))'d < 0$, then $\forall \alpha > 0$ sufficiently small, $f(\theta + \alpha d) < f(\theta)$. We call d the descent direction and α the step size.

(4) E > (4) E >

Definition (Level Set)

A level set of a real-valued function f of n variables is a set of the form

$$L_c(f) = \{(\theta_1,\ldots,\theta_n)' | f(\theta_1,\ldots,\theta_n) = c\}.$$

Note, conventionally, associated with a convex function f one can define a level set, sometimes called a *lower-level set*,

$$S_{\alpha} = \{ \theta \in S \,|\, f(\theta) \leq \alpha \}, \quad \alpha \in \mathbb{R},$$

to differentiate it from the *upper-level set* $\{\theta \in S \mid f(\theta) \ge \alpha\}$.

Unconstrained Optimization

Figure: The level sets of "Peaks"

CSCE 790: Neural Networks and Their Applications

Unconstrained Optimization

Projection onto xy plane: gradient vectors

In the Figure,

$$z = f(x, y) = 3(1 - x)^2 e^{-x^2 - (y+1)^2} - 10(\frac{x}{5} - x^3 - y^5)e^{-x^2 - y^2} - \frac{1}{3}e^{-(x+1)^2 - y^2},$$

is a function of two variables, obtained by translating and scaling Gaussian distributions.

- 34

イロト 不得下 イヨト イヨト

Algorithms for Unconstrained Optimization

Gradient Methods

OMOTIVATION: Decrease $f(\theta)$ until $\nabla f(\theta^*) = 0$ based on

 $f(\theta + \alpha d) \approx f(\theta) + \alpha (\nabla f(\theta))' d.$

If $(\nabla f(\theta))'d < 0$, then $f(\theta + \alpha d) < f(\theta)$ for small $\alpha > 0$.

Procedure: We start at some point θ⁰ (an initial guess) and successively generate vectors θ¹, θ², ..., such that f is decreased at each iteration, that is, f(θ^{k+1}) < f(θ^k) for all k = 0, 1, 2,

Algorithms for Unconstrained Optimization

Figure: Iterative Descent.

CSCE 790: Neural Networks and Their Applications

September 12, 2023 29 / 35

э

▶ ★ 臣 ▶ ★ 臣 ▶

Gradient-based Iterative Algorithms (Generic)

Proposition (Gradient is orthogonal to level set of a function)

The gradient of f at a point is perpendicular to the level set of f at that point.

化原因 化原因

Gradient-based Iterative Algorithms (Generic) Remark:

Therefore, if the direction d makes an angle with $\nabla f(\theta)$ that is greater than 90°, that is,

 $(\nabla f(\theta))'d < 0,$

there is an interval $(0, \delta)$ of step sizes such that

•
$$f(\theta + \alpha d) < f(\theta)$$
, $\forall \alpha \in (0, \delta)$,
• $\cos(\theta) = \frac{(\nabla f(\theta))' \cdot d}{\|\nabla f(\theta)\| \cdot \|d\|} < 0 \implies \theta > 90^{\circ}$.

- 34

ふちょうちょ

Gradient-based Iterative Algorithms (Generic)

Figure: Orthogonality of Gradient to Level Sets.

© Vignesh Narayanan

CSCE 790: Neural Networks and Their Applications

Gradient-based Iterative Algorithms (Generic)

Algorithm (Generic algorithm)

At each iteration k,

- $\theta^{k+1} = \theta^k + \alpha^k d^k$
- If $\nabla f(\theta^k) \neq 0$, then the direction d^k is chosen so that $(\nabla f(\theta^k))'d^k < 0$.
- The step size $\alpha^k > 0$ is chosen such that $f(\theta^k + \alpha^k d^k) < f(\theta^k)$.
- Principal example:

$$\theta^{k+1} = \theta^k - \alpha^k D^k \nabla f(\theta^k), \quad d^k = -D^k \nabla f(\theta^k),$$

•
$$D^k \succ 0$$
.
• $(\nabla f(\theta^k))' \cdot d^k = (\nabla f(\theta^k))'(-D^k \nabla f(\theta^k)) < 0$.

Neural network weight selection and training

Figure: Error-credit assignment problem

- For a NN to function as desired, their weights and biases need to be selected appropriately
- It was for many years unknown, how to use the error to tune the weights of each layer - 'error-credit assignment problem'

Proposition

Let $f : \mathbb{R}^k \to \mathbb{R}^m$ and $g : \mathbb{R}^m \to \mathbb{R}^n$ be smooth, i.e., C^{∞} . Let $h : \mathbb{R}^k \to \mathbb{R}^n$ be defined by $h(\theta) = g(f(\theta))$. Then $\nabla h(\theta) = \nabla f(\theta) \nabla g(f(\theta)), \quad \forall \theta \in \mathbb{R}^k.$