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Recap

ML - Functional view of models

Models - Parametric models

Multi-layer feedforward neural network

Learning paradigm - Supervised learning
Classification
Regression
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Math Recap

Set and operations on set (e.g., Cartesian product)

Relation → Functions

Vector space (V ,F ,+, .)

Span

Linear independence and Basis

Inner product

Norm
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Example: Regression

Figure: Input-output data points

{(x , y)} - Given set of input-output pairs

x ∈ Ω ⊆ R and y ∈ R

Prediction function f : Ω→ R

Input space (Ω,R,+, .)

Through ML we are searching for a
function in the function space(?) - a set
of (continuous?) functions from Ω→ R
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Example: Regression

Figure: Input-output data points in a 3-D space

{(x , y)} - Given set of input-output pairs

x ∈ Ω ⊆ R2 and y ∈ R

Prediction function f : Ω→ R

Input space (Ω,R,+, .)

Here we are searching for a function in
the function space - a set of continuous
functions from Ω→ R
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Math Recap

Linear vs Nonlinear functions
Optimization problems - (Cost function, Decision variables, and Constraint set)
Taylor’s formula and its relevance
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Recap

Taylor’s expansion provides a representation of function as infinite sum of terms expressed
as the functions derivatives at a single point
Mean value theorem provides a way to stop the expansion after the first derivative
Theorem of Extended value of mean provides a way to stop the expansion after the second
derivative
If f ′′(θ) > 0, ∀ θ, and f ′(θ∗) = 0,

=⇒ f (θ) = f (θ∗) + 0 + a positive number ∀ θ 6= θ∗

=⇒ f (θ) > f (θ∗) ∀ θ 6= θ∗

=⇒ θ∗ is the minimizer of f (θ)
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Minimizers
Minimizers
Local vs Global minimizers

minimizer

strict local

minimizersminimizer

strict local nonstrict localstrict local

minimizer (global) 

Figure 2.3.
Figure: Examples of local minimizers
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Math Recap - Moving beyond one dimension

Symmetric matrices

Positive definiteness

Eigen values and spectral radius

Notion of ’local’ or ’neighborhood’ (To be defined)
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Derivatives

Definition (Derivative)
Let Θ ⊂ R and let f : Θ→ R be a real-valued function. Suppose that Θ contains a
neighborhood of the point θ. We define the derivative of f at θ by

f ′(θ) = lim
α→0

f (θ + α)− f (θ)
α

provided that the limit exists. In that case we say that f is differentiable at θ.
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Visualization (1-D)

Figure: Changes in domain and range - Derivatives in 1-D
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Derivatives

The definition above does not work when we pass from functions of single real variable to
functions of several real variables. Now when Θ ⊂ Rn and f : Θ→ Rm, we have

∈Rm︷ ︸︸ ︷
f (θ + α)− f (θ)

α︸︷︷︸
∈Rn

.

We do not know what it means to divide by a vector and hence should seek another definition.
Modify the definition of a derivative to accommodate vector-valued functions of several real
variables.
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Derivatives

Definition (Directional derivative)
Let Θ ⊂ Rn and f : Θ→ Rm. Suppose that Θ contains a neighborhood of θ. Given d ∈ Rn

with d 6= 0, define
f ′(θ; d) = lim

α→0

f (θ + αd)− f (θ)
α

,

provided the limit exists. It is called the directional derivative of f at θ with respect to d .
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Derivatives

Definition (Partial derivative)
If

f ′(θ; ei ) = lim
α→0

f (θ + αei )− f (θ)
α

exists it is called the i th partial derivative of f at θ, denoted ∂f (θ)
∂θi

.

Definition (Gradient)

Assume that ∂f (θ)
∂θi

exists ∀i . The gradient of f at θ is defined as

∇f (θ) =


∂f (θ)
∂θ1...
∂f (θ)
∂θn

 and ∇f (θ) = (Df (θ))′.
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Derivatives

Definition (Hessian)

Suppose that ∂f (θ)
∂θi

∈ C∞ is a continuously differentiable function of θ. The Hessian matrix of
f at θ ∈ Θ is given by

H(θ) = ∇2f (θ) =



∂2f (θ)
∂θ1∂θ1

∂2f (θ)
∂θ1∂θ2

· · · ∂2f (θ)
∂θ1∂θn

∂2f (θ)
∂θ2∂θ1

∂2f (θ)
∂θ2∂θ2

· · · ∂2f (θ)
∂θ2∂θn... ... . . . ...

∂2f (θ)
∂θn∂θ1

∂2f (θ)
∂θn∂θ2

· · · ∂2f (θ)
∂θn∂θn


∈ Sn,

since ∂2f (θ)
∂θi∂θj

= ∂2f (θ)
∂θj∂θi

for i , j = 1, . . . , n.
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Derivatives

Example
Let f : R2 → R be defined by f (θ1, θ2) = θ3

1 − 12θ1θ2 + 8θ3
2. Let θ = (θ1, θ2), and then

∇f (θ) =
[

∂f (θ)
∂θ1
∂f (θ)
∂θ2

]
=

[
3θ2

1 − 12θ2
−12θ1 + 24θ2

2

]

and
H(θ) =

[
6θ1 −12
−12 48θ2

]
.
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Derivatives

Definition (Gradient matrix)
If Θ ⊂ Rn and f : Θ→ Rm is a vector-valued function, i.e., f (θ) = (f1(θ), . . . , fm(θ))′, then f is
called differentiable if fi is differentiable for all i = 1, . . . ,m. The gradient matrix of f is the
n ×m matrix

∇f (θ) =

 ∇f1(θ) · · · ∇fm(θ)


n×m

= (J(θ))′

where J(θ) is the Jacobian of f .
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Derivatives

Example
Let f : R2 → R be defined by f (θ1, θ2) = θ1θ2. The directional derivatives of f at a = (a1, a2)
with respect to

1 d1 = (1, 0)′ is
f ′(a; d1) = lim

α→0

(a1 + α)a2 − a1a2
α

= a2.

2 d2 = (1, 2)′ is

f ′(a; d2) = lim
α→0

(a1 + α)(a2 + 2α)− a1a2
α

= 2a1 + a2.
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Derivatives

Definition (Open ball)
For all norms ‖·‖ in Rn and for any ε > 0, we define an open ball or ε-neighborhood of θ0 ∈ Rn

by Bε(θ0) = B(θ0, ε) = {θ ∈ Rn : ‖θ − θ0‖ < ε}.

Example
The unit ball B(0, 1) in R2 contains all the points inside a circle of radius one centered at the
origin.
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Derivatives

Theorem (Extended M.V.T: Taylor’s theorem, second order expansions)
Let B(θ, r) be an open ball centered at θ ∈ Rn with radius r . Let f : Rn → R be twice
continuously differentiable (C2) over B(θ, r). Then

1 For all y such that θ + y ∈ B(θ, r), i.e., ‖y‖ < r , there exists an α ∈ [0, 1] such that

f (θ + y) = f (θ) + y ′∇f (θ) + 1
2y ′∇2f (θ + αy)y .

2 For all y such that θ + y ∈ B(θ, r) there holds

f (θ + y) = f (θ) + y ′∇f (θ) + 1
2y ′∇2f (θ)y + o(‖y‖2).
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Local vs. Global minima

Definition
Let F = {θ ∈ Rn | gi (θ) ≤ 0, hj(θ) = 0, i = 1, . . . ,m, j = 1, . . . , `} be the feasible region of a
NLP.

1 θ∗ ∈ F ⊂ Rn is a local minimum of the NLP if there exists ε > 0 such that f (θ∗) ≤ f (θ)
for any θ ∈ B(θ, ε) ∩ F .

2 θ∗ ∈ F is a strict local minimum of the NLP if there exists ε > 0 such that f (θ∗) < f (θ)
for any θ ∈ B(θ, ε) ∩ F , θ 6= θ∗.

3 θ∗ ∈ F is a global minimum of the NLP if f (θ∗) ≤ f (y) for ∀y ∈ F .
4 θ∗ ∈ F is a strict global minimum of the NLP if f (θ∗) < f (y) for ∀y ∈ F , y 6= θ∗.
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Unconstrained Optimization

Now, we examine algorithms for unconstrained optimization, which are motivated by moving
from a point θ along a descent direction d with step size α > 0 and repeating until ∇f (θ∗) = 0.
A first order approximation can be used. The central idea is based on Taylor’s expansion

f (θ + αd) ≈ f (θ) + α(∇f (θ))′d ,

and if (∇f (θ))′d < 0, then f (θ + αd) < f (θ) for some α > 0. Let’s start with an interesting
and fundamental observation of descent directions.
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Unconstrained Optimization

Proposition (Descent directions)
Let f : Rn → R be differentiable at θ. If there exists a d ∈ Rn such that (∇f (θ))′d < 0, then
∀α > 0 sufficiently small, f (θ+αd) < f (θ). We call d the descent direction and α the step size.
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Unconstrained Optimization

Definition (Level Set)
A level set of a real-valued function f of n variables is a set of the form

Lc(f ) = {(θ1, . . . , θn)′ | f (θ1, . . . , θn) = c}.

Note, conventionally, associated with a convex function f one can define a level set, sometimes
called a lower-level set,

Sα = {θ ∈ S | f (θ) ≤ α}, α ∈ R,

to differentiate it from the upper-level set {θ ∈ S | f (θ) ≥ α}.
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Unconstrained Optimization

Figure: The level sets of “Peaks”
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Unconstrained Optimization

(a ) (b)

Figure: Gradients are perpendicular to the level sets
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Unconstrained Optimization

In the Figure,

z = f (x , y) =3(1− x)2e−x2−(y+1)2

− 10(x
5 − x3 − y5)e−x2−y2 − 1

3e−(x+1)2−y2
,

is a function of two variables, obtained by translating and scaling Gaussian distributions.
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Algorithms for Unconstrained Optimization

Gradient Methods
1 Motivation: Decrease f (θ) until ∇f (θ∗) = 0 based on

f (θ + αd) ≈ f (θ) + α(∇f (θ))′d .

If (∇f (θ))′d < 0, then f (θ + αd) < f (θ) for small α > 0.
2 Procedure: We start at some point θ0 (an initial guess) and successively generate

vectors θ1, θ2, . . ., such that f is decreased at each iteration, that is, f (θk+1) < f (θk) for
all k = 0, 1, 2, . . ..
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Algorithms for Unconstrained Optimization

Figure: Iterative Descent.
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Gradient-based Iterative Algorithms (Generic)

Proposition (Gradient is orthogonal to level set of a function)
The gradient of f at a point is perpendicular to the level set of f at that point.
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Gradient-based Iterative Algorithms (Generic)
Remark:

Therefore, if the direction d makes an angle with ∇f (θ) that is greater than 90◦, that is,

(∇f (θ))′d < 0,

there is an interval (0, δ) of step sizes such that
f (θ + αd) < f (θ), ∀α ∈ (0, δ),

cos(θ) = (∇f (θ))′ · d
‖∇f (θ)‖ · ‖d‖ < 0 =⇒ θ > 90◦.
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Gradient-based Iterative Algorithms (Generic)

Figure: Orthogonality of Gradient to Level Sets.
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Gradient-based Iterative Algorithms (Generic)

Algorithm (Generic algorithm)
At each iteration k,

θk+1 = θk + αkdk

If ∇f (θk) 6= 0, then the direction dk is chosen so that (∇f (θk))′dk < 0.
The step size αk > 0 is chosen such that f (θk + αkdk) < f (θk).
Principal example:

θk+1 = θk − αkDk∇f (θk), dk = −Dk∇f (θk),

Dk � 0.
(∇f (θk))′ · dk = (∇f (θk))′(−Dk∇f (θk)) < 0.
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Neural network weight selection and training

Figure: Error-credit assignment problem

For a NN to function as desired, their
weights and biases need to be selected
appropriately
It was for many years unknown, how to
use the error to tune the weights of each
layer - ’error-credit assignment problem’
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Lemma: Chain rule

Proposition
Let f : Rk → Rm and g : Rm → Rn be smooth, i.e., C∞. Let h : Rk → Rn be defined by
h(θ) = g(f (θ)). Then

∇h(θ) = ∇f (θ)∇g(f (θ)), ∀θ ∈ Rk .
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