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Recap

@ ML - Functional view of models

Models - Parametric models

Multi-layer feedforward neural network

Learning paradigm - Supervised learning

o Classification
o Regression
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Math Recap

Set and operations on set (e.g., Cartesian product)

@ Relation — Functions

Vector space (V, F,+,.)

@ Span

@ Linear independence and Basis
@ Inner product

@ Norm
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Example: Regression

{(x,y)} - Given set of input-output pairs
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Through ML we are searching for a
function in the function space(?) - a set
of (continuous?) functions from Q — R
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Figure: Input-output data points
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Example: Regression

{(x,y)} - Given set of input-output pairs
e xcQCR?’andyeR

Prediction function f : Q — R

@ Input space (2, R, +,.)

@ Here we are searching for a function in
the function space - a set of continuous
functions from Q — R

Figure: Input-output data points in a 3-D space
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Math Recap

@ Linear vs Nonlinear functions
e Optimization problems - (Cost function, Decision variables, and Constraint set)

@ Taylor’'s formula and its relevance
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Recap

@ Taylor's expansion provides a representation of function as infinite sum of terms expressed
as the functions derivatives at a single point

@ Mean value theorem provides a way to stop the expansion after the first derivative

@ Theorem of Extended value of mean provides a way to stop the expansion after the second
derivative

o If f/(6) >0, V6, and f'(6*) = 0,

= f(0) = f(0") + 0+ a positive number V 6 # 6"
— £(6) > F(0F) VO %0
= 0" is the minimizer of f(6)
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Minimizers

@ Minimizers
@ Local vs Global minimizers

_—
strict local strict local nonstrict local strict local
minimizer (global) minimizer minimizers minimizer

Figure: Examples of local minimizers
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Math Recap - Moving beyond one dimension

@ Symmetric matrices

Positive definiteness

o Eigen values and spectral radius

Notion of 'local’ or 'neighborhood’ (To be defined)
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Derivatives

Definition (Derivative)

Let © C R and let f : © — R be a real-valued function. Suppose that © contains a
neighborhood of the point §. We define the derivative of f at 6 by

£1(6) = tim [0+ = 1)

a—0 «

provided that the limit exists. In that case we say that f is differentiable at 6.
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Visualization (1-D)
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Figure: Changes in domain and range - Derivatives in 1-D
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Derivatives

The definition above does not work when we pass from functions of single real variable to
functions of several real variables. Now when © C R” and f : © — R™, we have

(0}
~—~—

We do not know what it means to divide by a vector and hence should seek another definition.
Modify the definition of a derivative to accommodate vector-valued functions of several real
variables.
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Derivatives

Definition (Directional derivative)

Let © CR" and f : © — R™. Suppose that © contains a neighborhood of #. Given d € R”
with d # 0, define

71(0; d) = tim (0T = ()

a—0 (% ’

provided the limit exists. It is called the directional derivative of f at 6 with respect to d.
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Derivatives

Definition (Partial derivative)
If
F1(9: er) = lim T 0T ) = F(0)

a—0 o

f
exists it is called the it" partial derivative of f at 6, denoted 0 (9)

i

Definition (Gradient)

f'
Assume that aaé?) exists Vi. The gradient of f at 6 is defined as
of(0)
061
V(o) = : and V£(0) = (Df(0))'.
9 (0)
00,
CSCE 790: Neural Networks and Their Applications

September 12, 2023 14 /35



Derivatives

Definition (Hessian)

O (0)

Suppose that

90;
fatfecOisgi b
a IS given by _ 82f(9) 82f(0)
901001 06,00,
d%f(0)  03f(0)
H(0) = V2£(6) 002001 90200,
D%f(0)  0°F(0)
L 00,001 00,00,
since gzgzj), = ngéZ? fori,j=1,...,n.

0°f ()
00100,

0°f(0)
00,00,

0%f(0)
00,00,
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Derivatives

Example

Let f : R2 — R be defined by f(01,62) = 63 — 12610, + 863. Let 6 = (61,62), and then

af(0)
w(e):[ i ]:[ 303 — 1205 ]

of(6 _ 2
%};2 120, + 2403
and
| 66, 12
Al = [ —12 486, ] ’
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Derivatives

Definition (Gradient matrix)

If © CR" and f : © — R™ is a vector-valued function, i.e., f(8) = (f(0), ..., fn(0)), then fis
called differentiable if f; is differentiable for all i = 1,..., m. The gradient matrix of f is the
n X m matrix

VI(0) = | VA(9) |- | Vin(0) = (J(O)Y
nxXm
where J(6) is the Jacobian of f.
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Derivatives

Example

Let f : R2 — R be defined by f(f1,62) = 6160>. The directional derivatives of f at a = (a1, a2)
with respect to

Q@ di=(1,0)is

— lim (a1 + @)ax — a1a2
a—0 [0

f’(a; dl)

9 d2 = (1,2)/ is

2 _
F(a: dy) = imy (a1 + a)(azl— Q) —a1ay _ 2oy + .
o
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Derivatives

Definition (Open ball)
For all norms ||-|]| in R” and for any ¢ > 0, we define an open ball or e-neighborhood of 6y € R”
by B-(60) = B(bo,c) = {0 € R": [|6 — bo| < e}

| \

Example
The unit ball B(0,1) in R? contains all the points inside a circle of radius one centered at the

origin.
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Derivatives

Theorem (Extended M.V.T: Taylor's theorem, second order expansions)

Let B(6,r) be an open ball centered at § € R" with radius r. Let f : R" — R be twice
continuously differentiable (C?) over B(0,r). Then

Q For all y such that 8 +y € B(0,r), i.e., |ly|| < r, there exists an « € [0, 1] such that

1
f(0+y)="f(0)+yVFH)+ > Y'V2 (0 + ay)y.

@ For all y such that 0+ y € B(0, r) there holds

(0 +y) = F(0) + 'V F(6) + 5y V2O + ol Iy ).
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Local vs. Global minima

Definition
Let F ={0 € R"|gi(#) <0,hj(0)=0,i=1,...,m, j=1,...,¢} be the feasible region of a
NLP.

Q 0" € F C R"is a local minimum of the NLP if there exists € > 0 such that f(6*) < f(0)
for any 6 € B(0,e) N F.

@ 0* € F is a strict local minimum of the NLP if there exists € > 0 such that f(6*) < f(6)
for any 6 € B(0,e) N F, 0 # 0*.

@ 0* € F is a global minimum of the NLP if £(6*) < f(y) for Vy € F.

Q 0* € F is a strict global minimum of the NLP if f(6*) < f(y) for Vy € F, y # 6*.
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Unconstrained Optimization

Now, we examine algorithms for unconstrained optimization, which are motivated by moving
from a point @ along a descent direction d with step size o > 0 and repeating until V(6*) = 0.
A first order approximation can be used. The central idea is based on Taylor's expansion

0+ ad) = f(0) + a(VF(9))d,

and if (Vf(0))'d < 0, then f(6 + ad) < f(#) for some o > 0. Let's start with an interesting
and fundamental observation of descent directions.
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Unconstrained Optimization

Proposition (Descent directions)

Let f : R" — R be differentiable at 0. If there exists a d € R" such that (Vf(0))'d <0, then
Yo > 0 sufficiently small, f(0 + ad) < f(0). We call d the descent direction and « the step size.
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Unconstrained Optimization

Definition (Level Set)

A level set of a real-valued function f of n variables is a set of the form
Lc(F) = {(61,...,0,) | f(61,...,0,) = c}.

Note, conventionally, associated with a convex function f one can define a level set, sometimes

called a lower-level set,
Sa={0€S|f(f) <a}, aceR,

to differentiate it from the upper-level set {6 € S| f(0) > a}.
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Unconstrained Optimization
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Figure: The level sets of “Peaks”
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Unconstrained Optimization

Projection onto xy plane: gradient vectors

Level sets :
are perpendicular to level sets
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Figure: Gradients are perpendicular to the level sets
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Unconstrained Optimization

In the Figure,

z="f(x,y)=3(1- x)2e_)<2_(y'~'1)2

- 10(% —x® =Py - %e‘(””z‘ﬁ,

is a function of two variables, obtained by translating and scaling Gaussian distributions.
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Algorithms for Unconstrained Optimization

Gradient Methods
@ Motivation: Decrease f(#) until Vf(6*) = 0 based on

F(0+ ad) ~ £(0) + a(VF(0))d.

If (Vf(0))'d <0, then (6 + ad) < f() for small a > 0.

@ Procedure: We start at some point #° (an initial guess) and successively generate
vectors 01, 62, ..., such that f is decreased at each iteration, that is, f(«9k+1) < f(@k) for

all k=0,1,2,. ...
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Algorithms for Unconstrained Optimization

f(X) = Cq

% X0

Figure: Iterative Descent.
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Gradient-based lterative Algorithms (Generic)

Proposition (Gradient is orthogonal to level set of a function)
The gradient of f at a point is perpendicular to the level set of f at that point. J
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Gradient-based lterative Algorithms (Generic)

Remark:

Therefore, if the direction d makes an angle with V£ () that is greater than 90°, that is,
(VF(0))d <0,

there is an interval (0, ) of step sizes such that
o f(0+ad) < f(d), Vac(0,9),

o
(VF(9)) - d o
cos(f) = 20" <0 = 0> 90°
IV - NIl
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Gradient-based lterative Algorithms (Generic)

Vi(x)

Xy =X+ ad

f(x) = Cp<Cq x+8d

!

f(x)= cg<cp

Figure: Orthogonality of Gradient to Level Sets.
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Gradient-based lterative Algorithms (Generic)

Algorithm (Generic algorithm)

At each iteration k,
o Okt = ok + akd*
o If Vf(0K) # 0, then the direction d* is chosen so that (Vf(6%))'d* < 0.
o The step size o > 0 is chosen such that f(6% + a*¥d*) < f(6%).

@ Principal example:

0kt = ok — okDKVF(0F), dk = —DkVF(6Y),

o DF > 0.
o (VF(OK)) - d* = (VF(6K)) (— DKV F(6¥)) < 0.
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Neural network weight selection and training

@ For a NN to function as desired, their
weights and biases need to be selected
appropriately

@ It was for many years unknown, how to
use the error to tune the weights of each
layer - 'error-credit assignment problem’

Figure: Error-credit assignment problem
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Lemma: Chain rule

Proposition

Let f : RK — R™ and g :R™ — R" be smooth, i.e., C*. Let h: RX — R" be defined by
h(6) = g(f(0)). Then

Vh(h) = V(0)Vg(f(6)), Vb e R-
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