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Projects - Start Early!

Your overall final course letter grade will be determined by your grades on the following
assessments.

Homework Assignment 15%
Presentation 15%
Midterm Exam (Take home) 15%
Final Project 55%
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Supervised Learning

Input and target outputs are given for training

Learning relationship between the input output pairs

Types:
Regression: Covers situations where Y is continuous (quantitative)

Example: predicting the value of the Dow in 6 months, predicting the value of a given house
based on various inputs, etc.

Classification: Covers situations where Y is categorical (qualitative)

Example: Will the Dow be up or down in 6 months? Is this email spam or not?
Potential Paper Presentation or Project Topic - 1 (Image analysis)
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https://www.sciencedirect.com/science/article/pii/S0263876220300988?casa_token=phYtdj3OWsYAAAAA:oax4VP2q_VtrsxlbYbZcAFui0tMJVUGl-JHhXPYbC7SXzvHVDiQWRD17C8YZcHAeRYC8lGtMKDA


Decision Boundaries

Figure: Linear DB Figure: Nonlinear DB
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Second Detour - Linear Algebra - Spaces

Definition (Vector Space)
A vector space V over a field F is a set of elements called vectors, together with two operations,
addition: V × V → V , x , y ∈ V 7→ x + y ∈ V , and scalar multiplication: F× V → V , α ∈ F,
x ∈ V 7→ αx ∈ V , satisfying 8 properties (refer slides from last class).
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Vector Space

Example (Vector spaces)
(i) {0}, the trivial space.
(ii) R over R.
(iii) Rn over R.
(iv) Space of m × n matrices, Rm×n over R.
(v) The collection of all real-valued continuous functions f : [a, b]→ R over [a, b] ⊂ R,

denoted as C [a, b] with F = R. x = y if x(t) = y(t), ∀t ∈ [a, b].
(vi) Cm[t0, t1], the space of m-tuples f : [t0, t1]→ Rm whose elements are continuous functions

on [t0, t1].
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Subspace

Definition (Subspace)
A nonempty subset S of a vector space V is called a subspace of V if αx + βy ∈ S for every
x , y ∈ S and every α, β ∈ R.

Remarks
1 By definition, a subspace must contain the null vector 0.
2 V is itself a subspace of V .
3 A subspace not equal to the entire space is said to be a proper subspace.

Potential Paper Presentation or Project Topic - 2 (NLP)
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https://arxiv.org/abs/2205.10964


Span

Definition (Span)
Let V be a vector space. Given x1, . . . , xm ∈ V , the span of x1, . . . , xm, denoted by
span{x1, . . . , xm}, is the set of all vectors v that can be written as v =

∑m
i=1 αixi for some

αi ∈ R. That is,

span{x1, . . . , xm} = {v ∈ V : v =
m∑

i=1
αixi for someαi ∈ R}.

We say v can be written as a linear combination of the vectors x1, . . . , xm.
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Linear Independence

Definition (Linear Independence)
A set of vectors x1, . . . , xk in a vector space V is said to be linearly independent if∑m

i=1 αixi = 0, where α1, . . . , αm are constants, implies that αi = 0 for all i = 1, . . . ,m. That
is,

m∑
i=1

αixi = 0 =⇒ αi = 0, ∀i = 1, . . .m.

Definition (Basis)
If span{x1, . . . , xn} = V and {x1, . . . , xn} is a linearly independent set, it is said to be a basis of
V .
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Inner Product

Definition (Inner Product)
Let X be a real vector space. An inner product on X is a mapping 〈·, ·〉 : X × X → R such that
∀x , y , z ∈ X , a, b ∈ R, we have

1 〈x , x〉 ≥ 0 (positivity) and 〈x , x〉 = 0 ⇐⇒ x = 0 (definiteness)
2 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉 (additivity in the first slot)
3 〈αx , y〉 = α〈x , y〉 (homogeneity in the first slot)
4 〈x , y〉 = 〈y , x〉 (conjugate symmetry)

Two vectors x , y ∈ V are said to be orthogonal if 〈x , y〉 = 0.
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Norm

Definition (Norm)
A mapping ‖·‖ : X → F on a vector space X over a field F is called a norm if for all x , y ∈ X
and α ∈ F it satisfies

(i) ‖x‖ ≥ 0 (positivity) and ‖x‖ = 0 ⇐⇒ x = 0 (definiteness)
(ii) ‖x + y‖ ≤ ‖x‖+ ‖y‖ (triangle inequality)
(iii) ‖αx‖ = |α|·‖x‖ (homogeneity).
If X is an inner product space, then ‖x‖ =

√
〈x , x〉 is the induced norm.
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Example

Example

1 The Euclidean norm (or `2 norm) on Rn is ‖x‖2 =
√
〈x , x〉 =

∑n
i=1 x2

i
1
2 .

2 The Supremum norm (or `∞ norm) on Rn is ‖x‖∞ = max{|x1|, . . . , |xn|}.
3 The matrix norm (or induced norm or operator norm) of an n × n matrix A is

‖A‖ = max
{x∈Rn | ‖x‖=1}

‖Ax‖ = max
x∈Rn

‖Ax‖
‖x‖ .

Note that there are various matrix norms, here we are interested in the induced norm or
operator norm.

4 The p-norm of Rn is ‖x‖p = (
∑n

i=1|xi |p)
1
p for p ≥ 1.
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Equivalence of Norms

Proposition (Equivalence of norms on Rn)
For any two norms ‖·‖a and ‖·‖b on Rn, there exist positive constants α and β such that for all
x ∈ Rn,

α‖x‖a≤ ‖x‖b ≤ β‖x‖a.

Example
‖x‖∞≤ ‖x‖2≤

√
n‖x‖∞. For example, if x = (3, 4)T , then ‖x‖∞= 4, ‖x‖2= 5 and hence√

n‖x‖∞= 4
√

2.
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Square Matrices and Eigenvalues

Definition (Singular matrix)
An n × n matrix A is called singular if det(A) = 0. It is nonsingular or invertible if det(A) 6= 0.
If A and B are n × n invertible matrices, then (AB)−1 = B−1A−1.

Proposition
Let A be a square matrix.

1 A complex number λ is an eigenvalue of A if and only if there exists a nonzero eigenvector
associated with λ.

2 A is singular if and only if it has an eigenvalue that is equal to zero.
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Square Matrices and Eigenvalues

Definition (Spectral Radius)
The spectral radius of a matrix A ∈ Rn×n is ρ(A) = max|λi |, where λ(A) = {λ1, . . . , λn},
namely, the maximum of the magnitudes of the eigenvalues of A. Then ρ : Rn×n → R is a
constant function of A.

Dr. Vignesh Narayanan CSCE 790: Neural Networks and Their Applications September 5, 2023 15 / 24



Revisiting Parametric Models

Given data:

{(x1, y1), (x2, y2), . . . , (xn, yn)}

Let xi =


xi1
xi2
...

xip



Model Choice:

ŷi = fθ(xi ) = θ0+θ1xi1+θ2xi2+. . .+θnxip

Let θ =


θ0
θ1
...
θp


n, p are number of samples and number of features per sample
fθ(x) is a linear model
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Cost Function

We can measure the accuracy of our hypothesis function by using a cost function

J(θ) = 1
n

∑
i=1,...,n

(ŷi − yi )2 = 1
n

∑
i=1,...,n

(fθ(xi )− yi )2

Find θ such that the predicted output is close to the actual output

min
θ∈Rp

J(θ)
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Example 2-Parameter Model
For a fixed θ, fθ(x) is a function of x
Example:

Figure: Example linear function for a fixed θ0, θ1
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Cost Function

The cost/objective/loss function is supported on the parameter space
Example

Figure: Example cost function supported in the two-dimensional parameter space (with θ0, θ1)
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Third Detour - Optimization - Overview

Optimization problems are ubiquitous in science and engineering, and in our daily life. Thinking
about how we

optimize our way to go to work,
choose the line we stand in at a supermarket, or
maximize our profit in the stock market.

we are confronted in our daily life with making “optimal” decisions.
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Third Detour - Optimization - Overview

Usually, we cannot freely choose from all available decision alternatives, but there are constraints
that restrict the number of available alternatives. Common restrictions come from the following

availability of resource
law
technical limitations
interpersonal relations between humans
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Third Detour - Optimization - Overview

Optimization models attempt to express, in mathematical terms, the goal of solving a problem
in the “best” way. For example,

running a business to maximize profit, minimize loss, maximize efficiency, or minimize risk,
selecting a flight plan for an aircraft to minimize time or fuel use.

With the help of computer hardware and software, it is now possible to solve optimization
problems with thousands or even millions of variables and constraints.
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History of Optimization

Fermat, 1638; Newton 1670:

min f (θ)
df (θ)

dθ = 0.

Euler 1755:

min f (θ1, . . . , θn)
∇f (θ) = 0.
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History of Optimization

Lagrange, 1797:

min f (θ1, . . . , θn)
s.t. gk(θ1, . . . , θn) = 0, k = 1, . . . ,m.

Euler, Lagrange: Problems in infinite dimensions, calculus of variations.
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