CSCE 790: Neural Networks and Their Applications AIISC and Dept. Computer Science and Engineering Email: vignar@sc.edu

Dr. Vignesh Narayanan

August 31, 2023

Dr. Vignesh Narayanan

CSCE 790: Neural Networks and Their Applications

August 31, 2023 1/23

Your overall final course letter grade will be determined by your grades on the following assessments.

Homework Assignment	15%
Presentation	15%
Midterm Exam (Take home)	15%
Final Project	55%

э

イロト イヨト イヨト イヨ

Linear-in-the-Parameter Networks

• Consider the two-layer NN

 $y = W\phi(vx)$, output layer activation function is linear.

- If the first layer weights v are predetermined by some apriori technique, then only the second layer weights W and threshold are to be trained
- In this case, we can define $\sigma(x) = \phi(vx)$ so that $y = w\sigma(x)$, where $x \in \mathbb{R}^n$ and $y = \mathbb{R}^m$, $\sigma : \mathbb{R}^n \to \mathbb{R}^L$, L is the number of hidden layer neurons
- $y = W\sigma(x)$ is called function-link neural network (FLNN, Sadegh, 1993)
- Here $\sigma(x)$ is allowed to be a general function from $\mathbb{R}^n \to \mathbb{R}^L$ and it is not diagonal.
- RVFL Random vector functional-link neural network Stochastic Basis (Igelnik and Pao 1995)

・ コ ト ・ 西 ト ・ 日 ト ・ 日 ト

Activation Functions

- The activation function $\sigma(\cdot)$ is selected on a case-by-case basis
- The role of the activation function is to model the behavior of the nerve cell, where there is no o/p below a certain value of the argument of $\sigma(\cdot)$ and it takes a specific magnitude above the value of the argument.
- A general class of monotonically nondecreasing function taking on bounded values at $-\infty$ to ∞ is the sigmoid functions.
- Typically, the normalized amplitude range of the output of a neuron is written as the closed unit interval (e.g., [0, 1], [-1, 1]).

イロト 不得下 イヨト イヨト

Examples of Activation Function

Example (Threshold Function - Heaviside Function)

Let $\alpha = \sum_{j=1}^{n} v_j x_j + v_0$. The threshold function can be defined as $\sigma(\alpha) = \begin{cases} 1 & \text{if } \alpha > 0 \\ 0 & \text{if } \alpha \le 0 \end{cases}$

Example (Piecewise Linear Function)

$$\sigma(\alpha) = \begin{cases} 1 & \text{if} \quad \alpha \ge \frac{1}{2} \\ \alpha & \text{if} \quad \frac{1}{2} > \alpha > \frac{-1}{2} \\ 0 & \text{if} \quad \alpha \le \frac{-1}{2} \end{cases}$$

Example (Sigmoid Function)

- $\sigma(\alpha) = \frac{1}{1 + \exp^{-\beta\alpha}}$
- β determines slope
- $\bullet\,$ slope at origin is $\beta/4$ and as $\beta\to\infty,$ sigmoid $\to\,$ threshold

Dr. Vignesh Narayanan

CSCE 790: Neural Networks and Their Applications

Example: Gaussian or Radial Basis Function Network

- An NN activation often used is the Gaussian or RBF (Sanner and Slotine, 1991)
- Given, when $x \in \mathbb{R}$ (is a scalar),

$$\sigma(x) = \exp^{-(x-\mu)^2/2p},$$

where μ is the mean and p is the variance

- When $x \in \mathbb{R}^n$, $\mu = (\mu_1, \dots, \mu_n)' \in \mathbb{R}^n$, then $\sigma_j(x) = \exp^{-\frac{1}{2}(x-\mu_j)'P_j^{-1}(x-\mu_j)}$, P_j is an $n \times n$ matrix
- Let $\sigma(x) = (\sigma_1(x), \dots, \sigma_n(x))'$, then $y = W\sigma(x)$
- Typically, μ , p or P are pre-selected and fixed and only the weights of the o/p layer are trained

イロト 不得下 イヨト イヨト

Radial Basis Function Network

- The RBF network has a feedforward structure consisting of a single hidden layer of L locally-tuned units which are fully interconnected to an output layer of m linear units
- All hidden units simultaneously receive the n-dimensional real-valued input vector x
- Hidden unit outputs are not calculated using the weighted-sum/sigmoidal activation mechanism
- Output of each hidden layer units z_j is obtained by calculating the "closeness" of the input x to an *n*-dimensional parameter vector j associated with the j^{th} hidden unit.

$$z_j(x) = \exp^{-\frac{1}{2}(x-\mu_j)'P_j^{-1}(x-\mu_j)}$$

• Output of the network is computed directly as the weighted-sum of the hidden layer outputs

- 34

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Example: Cerebellar Model Arithmetic Controller (CMAC) Network

- These were introduced by James Albus, 1975
- Instead of RBF, they are made up of spline functions (e.g., 2nd order splines are triangular functions)
- The activation function of CMAC network is called receptive field functions (analogous to the optical receptive fields in the eye)

**Approximation by Superpositions of a Sigmoidal Function

Quick Recap

- Artificial neural networks (a brief evolutionary history)
- ML Functional view Models Parametric models
- McCulloch-Pitts model and its probabilistic interpretation
- Perceptron model
- Multi-layer feedforward neural network
- Role of bias/threshold function
- Some types of activation functions
- Special types of feedforward network architectures Linear-in-the parameter (FLNN), RBF, CMAC

э

- **Supervised Learning:** The model is provided with a set of examples of proper behavior (inputs/targets)
- **Unsupervised Learning:** Only inputs are available to the learning model. The model learns to categorize (cluster) the inputs
- **Reinforcement Learning:** The model is only provided with a grade, or score, which indicates performance, and the objective is to maximize the reward over a long-time interval
- Semi-supervised learning check this out!

オロト オ周ト オモト オモト

Supervised Learning

- Input and target outputs are given for training
- Learning relationship between the input output pairs
- Types:
 - **Regression:** Covers situations where Y is continuous (quantitative)
 - Example: predicting the value of the Dow in 6 months, predicting the value of a given house based on various inputs, etc.
 - Classification: Covers situations where Y is categorical (qualitative)
 - Example: Will the Dow be up or down in 6 months? Is this email spam or not?

3

イロト 不得下 イヨト イヨト

Revisiting Parametric Models

• Given data:

$$\{(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)\}$$

• Let $x_i = \begin{pmatrix} x_{i1} \\ x_{i2} \\ \vdots \\ x_{ip} \end{pmatrix}$

Model Choice:

 θ_{p}

$$\hat{y}_{i} = f_{\theta}(x_{i}) = \theta_{0} + \theta_{1}x_{i1} + \theta_{2}x_{i2} + \ldots + \theta_{n}x_{ip}$$

Let $\theta = \begin{pmatrix} \theta_{0} \\ \theta_{1} \\ \vdots \end{pmatrix}$

- *n*, *p* are number of samples and number of features per sample
- $f_{\theta}(x)$ is a linear model

٠

э

▶ ∢ ⊒

• We can measure the accuracy of our hypothesis function by using a cost function

$$J(\theta) = \frac{1}{n} \sum_{i=1,...,n} (\hat{y}_i - y_i)^2 = \frac{1}{n} \sum_{i=1,...,n} (f_{\theta}(x_i) - y_i)^2$$

 $\bullet\,$ Find θ such that the predicted output is close to the actual output

 $\min_{\theta \in \mathbb{R}^p} J(\theta)$

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example 2-Parameter Model

- For a fixed θ , $f_{\theta}(x)$ is a function of x
- Example:

CSCE 790: Neural Networks and Their Applications

(日)

Cost Function

- The cost/objective/loss function is supported on the parameter space
- Example

Figure: Example cost function supported in the two-dimensional parameter space (with θ_0, θ_1)

イロト イヨト イヨト イヨ

Complex Models

- From MLP to DNN Parameter space is extremely large
- Example

Multi-Layer Perceptron

Deep Neural Networks

Dr. Vignesh Narayanan

CSCE 790: Neural Networks and Their Applications

Second Detour - Linear Algebra - Review

Definition

A tensor is an array of numbers, that may have

- zero dimensions, and be a scalar
- one dimension, and be a vector
- two dimensions, and be a matrix
- or more dimensions.

Definition (Vector Space)

A vector space V over a field \mathbb{F} is a set of elements called vectors, together with two operations, addition: $V \times V \to V$, $x, y \in V \mapsto x + y \in V$, and scalar multiplication: $\mathbb{F} \times V \to V$, $\alpha \in \mathbb{F}$, $x \in V \mapsto \alpha x \in V$, satisfying for $\forall x, y, z \in V$ and $\forall \alpha, \beta \in \mathbb{F}$:

1. x + y = y + x (additive commutativity)

2.
$$(x + y) + z = x + (y + z)$$
 (additive associativity)

- 3. $\exists 0 \in V : x + 0 = 0 + x = x$ (additive identity)
- 4. $\exists (-x) \in V : x + (-x) = 0$ (additive inverse)

- 3

・ 何 ト ・ ヨ ト ・ ヨ ト

Vector Space

Definition

- 5. $\alpha(x + y) = \alpha x + \alpha y$ (scalar distributivity)
- 6. $(\alpha + \beta)x = \alpha x + \beta x$ (vector distributivity)
- 7. $(\alpha\beta)x = \alpha(\beta x)$ (multiplicative associativity)
- 8. $\exists 1 \in \mathbb{F} : 1x = x$ (multiplicative identity)

Example (Vector spaces)

- (i) $\{0\}$, the trivial space.
- (ii) \mathbb{R} over \mathbb{R} .
- (iii) \mathbb{R}^n over \mathbb{R} .
- (iv) Space of $m \times n$ matrices, $\mathbb{R}^{m \times n}$ over \mathbb{R} .

э

▲ 伺 ▶ ▲ 三 ▶

Definition (Subspace)

A nonempty subset S of a vector space V is called a subspace of V if $\alpha x + \beta y \in S$ for every $x, y \in S$ and every $\alpha, \beta \in \mathbb{R}$.

3

< ∃ >

- **9** By definition, a subspace must contain the null vector 0.
- **2** V is itself a subspace of V.
- S A subspace not equal to the entire space is said to be a proper subspace.

э

イロト 不通 ト イヨト イヨ

Span

Definition (Span)

Let V be a vector space. Given $x_1, \ldots, x_m \in V$, the span of x_1, \ldots, x_m , denoted by $\operatorname{span}\{x_1, \ldots, x_m\}$, is the set of all vectors v that can be written as $v = \sum_{i=1}^m \alpha_i x_i$ for some $\alpha_i \in \mathbb{R}$. That is,

span{
$$x_1, \ldots, x_m$$
} = { $v \in V : v = \sum_{i=1}^m \alpha_i x_i$ for some $\alpha_i \in \mathbb{R}$ }.

We say v can be written as a linear combination of the vectors x_1, \ldots, x_m .

イロト 不得下 イヨト イヨト

Definition (Linear Independence)

A set of vectors x_1, \ldots, x_k in a vector space V is said to be linearly independent if $\sum_{i=1}^{m} \alpha_i x_i = 0$, where $\alpha_1, \ldots, \alpha_m$ are constants, implies that $\alpha_i = 0$ for all $i = 1, \ldots, m$. That is,

$$\sum_{i=1}^{n} \alpha_i x_i = 0 \implies \alpha_i = 0, \forall i = 1, \dots m.$$

Definition (Basis)

If span $\{x_1, \ldots, x_n\} = V$ and $\{x_1, \ldots, x_n\}$ is a linearly independent set, it is said to be a basis of V.