CSCE 790: Neural Networks and Their Applications AIISC and Dept. Computer Science and Engineering Email: vignar@sc.edu

© Vignesh Narayanan

October 31, 2023

© Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-14-0) October 31, 2023 1 / 15

 Ω

- **o** Given
	- The desired or the reference trajectory for the robotic system to track
	- Measurements from the sensor informing the actual path/trajectory of the robotic system
- To Do
	- Design control inputs or policies that steers the actual path traced by the robotic system is close to the reference trajectory

 Ω

イロト イ押 トイヨト イヨ

Physics-based Model

e Robotic arm

$$
M(q)\ddot{q}(t)+V_m(q,\dot{q})+G(q)+F(q,\dot{q})=\tau(t)+\tau_d(t)
$$

- Dynamic Equations Newton-Euler method or Lagrangian Dynamics
- $q(t)$ Joint variable
- \bullet $M(q)$ Models of inertial mass
- \bullet $V_m(q,q)$ Models of coriolis/centripetal force
- \bullet $F(q, \dot{q})$ Models of friction
- \bullet $G(q)$ models of Gravity
- **•** *τ*(*t*) Control torque
- \bullet $\tau_d(t)$ models of disturbance

目

Tracking Control Problem

- Let the desired trajectory for the robot manipulator be $q_d(t)$
- Now, we can define the tracking error as

$$
e(t) = q_d(t) - q(t)
$$

• Define the filtered tracking error as

$$
r(t) = e(t) + \lambda e(t)
$$

• Filtered tracking error dynamics

$$
\dot{r}(t) = \ddot{e}(t) + \lambda \dot{e}(t)
$$

Tracking Control Problem

- Filtered tracking error dynamics are: $\dot{r}(t) = \ddot{e}(t) + \lambda \dot{e}(t)$
- Recall the robot dynamics: $M(q)\ddot{q}(t) + V_m(q, \dot{q}) + G(q) + F(q, \dot{q}) = \tau(t) + \tau_d(t)$

$$
Mi(t) = -V_{m}r(t) - \tau(t) + h + \tau_d(t)
$$

\n
$$
h = M(q)(\ddot{q}_d + \lambda \dot{e}) + V_m(q, \dot{q})(\dot{q}_d + \lambda e) + F(\dot{q}) + G(q)
$$

Control Torque

$$
\tau(t)=\hat{h}+{\sf K}_{{\sf v}} r(t)
$$

with λ , K_v being a positive design parameter

• The closed-loop dynamics is obtained as

$$
Mi(t) = -V_m r(t) - \hat{h} - K_v r(t) + h + \tau_d(t)
$$

NN Control - Function Approximator

Figure: Feedback NN control

© Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-0-0) October 31, 2023 6 / 15

 \equiv

 299

 4 ロ } 4 \overline{m} } 4 \overline{m} } 4 \overline{m} }

Steady-State Analysis of Feedback Control System

• Filtered tracking error dynamics

$$
\dot{r}(t) = -\frac{V_m - K_v}{M}r(t) + \frac{h - \hat{h}}{M} + \frac{\tau_d(t)}{M}
$$

$$
\dot{r}(t) = -Kr(t) + N_{\varepsilon} + d(t)
$$

What does the Lyapunov approach reveal?

э

 299

∢ ロ ▶ ィ 何 ▶ ィ

Example

Example (Given)

- Adaptive control origins of data-integrated control
- System description: $\dot{y}(t) = ay(t) + b[u(t) f(y(t))], y(0) \in \mathbb{R}$
- Reference model: $\dot{y}_m(t) = a_m y_m(t) + b_m r(t)$

Example (Control Design)

- $f(y(t)) \approx \hat{f}(y(t)) = W\phi(Vy(t)), \; W, V$ are unknown parameters, $\phi(\cdot)$ are user-defined basis functions
- Assumption: $\exists k_{y},k_{r}: a_{m}=a+bk_{y},\ b_{m}=bk_{r}$
- Pick control: $u(t) = \hat{k}_{{\mathsf y}} y(t) + \hat{k}_{{\mathsf r}} r(t) + \hat{f}(y(t))$

 290

イロメ イ何 メイヨメ イヨメーヨ

Example

Example (Goal)

Find $\hat k_y(t)$, $\dot{\hat k}_r(t)$, $\dot W(t),\ \dot V(t)$ such that as $t\to\infty$, $\hat k_y\to k_y$, $\hat k_r\to k_r$, $\hat t\to f$, $y(t) \rightarrow y_m(t)$

Figure: Adaptive Control-MRAC

© Vignesh Narayanan [CSCE 790: Neural Networks and Their Applications](#page-0-0) October 31, 2023 9 / 15

 290

4 0 8

Check These for More on NN Control

- [NN for Control: Tutorial](https://hagan.okstate.edu/HaganDemuthACC99.pdf)
- o [NN for Control Using RL Algorithm](http://incompleteideas.net/papers/barto-sutton-anderson-83.pdf)
- o [NN Control of Robot Manipulator](https://cpb-us-w2.wpmucdn.com/blog.nus.edu.sg/dist/f/14858/files/2021/07/TIE-task-space-97.pdf)

э

 299

4 0 8

 $AB + 4E$

 \sim

Reinforcement Learning

An 'agent' is only provided with a grade, or score, which indicates performance, and the objective is to maximize the reward over a long-time interval.

Figure: Reinforcement Learning

- Input data and a 'reward' output is given
- RL problems: Decision making problems
- Environment is unknown, nonlinear, and potentially stochastic, complex
- Policy: A mapping from states to actions
- RL seeks to learn a policy that maximizes the agent's reward in the long run
- RL is important because it is a very general formulation of the AI problem and its objective with autonomy (no knowledgeable supervision) Ω
- Physics-based models are useful
	- Models are not always available
	- Models are almost always not perfect
- Markov Decision Process (MDP)
	- Can also be viewed in a feedback control paradigm
	- Common (modeling) in Reinforcement Learning

Agent and Environment

Figure: Agent-Environment Interaction

- Agent observes state at step t, $S_t \in \mathcal{S}$
- Produces action at step t, $A_t \in \mathcal{A}$
- Gets a rewards as a consequence, $R_{t+1} \in \mathcal{R}$, a scalar
- **Environment transits to a new state** $\mathcal{S}_{t+1} \sim \mathcal{T}(\mathcal{S}_t, A_t)$

Figure: Finite Markov decision process

- \bullet Environment unknown, nonlinear, and potentially stochastic, complex \rightarrow Dynamical System
- Policy mapping from states to actions \rightarrow Feedback Control law
- Agent Decision maker \rightarrow Controller
- \bullet Action Decision \rightarrow Control input

E

 298

イロト イ押ト イヨト イヨト

- Autoencoder and Variational Autoencoder
- **o** Generative Adversarial Network
- **.** Long Short Term Memory Network
- **Echo State Networks (Reservoir Computing Network)**
- Convolutional Neural Network
- **Graph Neural Network**

目