
CSCE 790: Neural Networks and Their Applications
AIISC and Dept. Computer Science and Engineering

Email: vignar@sc.edu

© Vignesh Narayanan

October 10, 2023

© Vignesh Narayanan CSCE 790: Neural Networks and Their Applications October 10, 2023 1 / 27



Hopfield Network

Figure: Hopfield network (Lewis, ’99)
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Neural Processing Elements (NPE)

Figure: NPE - Continuous time units (Lewis, ’99)

yi (t) =
n∑

j=1
wijσj(xj)(t), τi ẋi (t) = −xi (t) +

n∑
j=1

wijσj(xj)(t) + viiui
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DT - Neural Processing Elements (NPE)

Figure: NPE - Discrete time units (Lewis, ’99)

yi (k) =
n∑

j=1
wijσj(xj)(k), xi (k + 1) = pixi (k) +

n∑
j=1

wijσj(xj)(k) + viiui
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Hopfield Networks

Figure: Hopfield network with NPE (Lewis, ’99)
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Generalized Recurrent Neural Network

FF-ANN

Figure: Generalized recurrent neural networks (Lewis, ’99)
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Direct Computation of Weights for Hopfield Network

In the Hopfield net, the weights can be initialized by direct computation of outer products
between desired outputs
Suppose we would like to design a Hopfield network that can classify or discriminate
between P given bipolar pattern {X 1,X 2, . . . ,XP} each having n entries of either +1 or −1
Given x(0) as initial condition (input), the Hopfield network should perform association and
match the input with one of the P patterns
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Hopfield Weight Selection

Hopfield showed that weights to solve this problem may be selected by using the Hebbian
philosophy of learning as the outer product of XP

W = 1
n

P∑
p=1

XP(XP)′ − 1
nPI,

I is the identity matrix
The purpose of the term PI is to zero out the diagonal
Note that this weight matrix W is symmetric
This formula effectively encodes the exemplar patterns in the weights of the NN
Though there is no weight tuning, technically this formula is an example of supervised
learning, as the desired outputs are used to compute the weights
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Example

Example
Consider a Hopfield network

ẋ(t) = −1
2x(t) + 1

2W ′σ(x(t)) + 1
2u,

with x(t) ∈ R2 and a symmetric sigmoid function

σ(xi ) = 1− e−100xi

1 + e−100xi
.

Suppose the prescribed exemplar patterns are X 1 = (1, 1)′ and X 2 = (−1,−1)′. (u = 0)
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Example

Example
Then, according to the ‘training’ equation,

the weight matrix is
(

0 1
1 0

)
.

Figure: Symmetric Sigmoid Figure: Trajectories of the Hopfield networks
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Backpropagation Through Time (wiki)
Backpropagation through time (BPTT) for training certain types of recurrent neural
networks is an analogue to Backpropagation algorithm for training feedforward neural
networks

Figure: Backpropagation through time (wiki)
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BPTT

In the example the neural network contains a recurrent layer f and a feedforward layer g
Training cost can be defined in various way
Example: Aggregated cost - average of the costs of each time steps
In the figure the cost at time t + 3 is show by unfolding the recurrent layer f for three time
steps and adding the feedforward layer g
Each instance of f in the unfolded network shares the same parameters
Thus the weight updates in each instance f1, f2, f3 are summed together
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NN Application for Control - Learning Paradigm - ”Reinforcement Learning”
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Control Application: Lyapunov Techniques for Controller Design

Recall the problem of Control design:
Example: Cruise control problem for a toy car model

ẋ(t) = − c
mu(t), x(0) ∈ R+, (1)

where x(t) is the velocity of the car at time t.
What happens to this system when a proportional control input u(t) = Kx(t) is selected
(K > 0)?
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Reference Tracking Problem

Given a reference/desired velocity r(t), what should be the control input so that the car
moves with the given velocity?
Define the error, i.e., the difference between the reference velocity and the actual velocity as

e(t) = r(t)− x(t)

Compute how this error changes with time,

ė(t) = ṙ(t)− ẋ(t) = ṙ(t) + c
mu(t),

How to design control input for this case?
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Lyapunov Techniques for Controller Design

Recall the problem of Control design:
Example: Cruise control problem for a toy car model

ẋ(t) = − c
mu(t), x(0) ∈ R+, (2)

where x(t) is the velocity of the car at time t.
What happens to this system when a proportional control input u(t) = Kx(t) is selected
(K > 0)?

© Vignesh Narayanan CSCE 790: Neural Networks and Their Applications October 10, 2023 16 / 27



Feedback Control Problem

Given a reference/desired velocity r(t), what should be the control input so that the car
moves with the given velocity?
Define the error, i.e., the difference between the reference velocity and the actual velocity as

e(t) = r(t)− x(t)

Compute how this error changes with time,

ė(t) = ṙ(t)− ẋ(t) = ṙ(t) + c
mu(t),

How to design control input for this case?
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Regulation Control Problem

Given a constant or fixed reference/desired velocity, i.e., r(t) = R for all t > 0, what
should be the control input so that the car moves with the given velocity?
Define the error, i.e., the difference between the reference velocity and the actual velocity as

e(t) = R − x(t)

Compute how this error changes with time,

ė(t) = Ṙ − ẋ(t) = 0 + c
mu(t),

How to design control input for this case?
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Example: Robotic System

Figure: Robotic Systems (wiki). SKYWASH, DaVinci AEG, Dornier, Fraunhofer Institute, Putzmeister - Germany
Using 2 Skywash robots for cleaning a Boeing 747-400 jumbo jet, its grounding time is reduced from 9 to 3.5
hours. The world´s largest cleaning brush travels a distance of approximately 3.8 kilometers and covers a surface
of around 2,400 m2 which is about 85% of the entire plane´s surface area. The kinematics consist of 5 main
joints for the robot´s arm, and an additional one for the turning circle of the rotating washing brush.The Skywash
includes database that contains the aircraft-specific geometrical data. A 3-D distance camera accurately positions
the mobile robot next to the aircraft. The 3-D camera and the computer determine the aircraft´s ideal
positioning, and thus the cleaning process begins.
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Example

Figure: Medical Robotics
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Feedback Control System

Figure: Block diagram of a feedback control system
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Example Control Problem

Given
The desired or the reference trajectory for the robotic system to track
Measurements from the sensor informing the actual path/trajectory of the robotic system

To Do
Design control inputs or policies that steers the actual path traced by the robotic system is
close to the reference trajectory
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Physics-based Model

Robotic arm
M(q)q̈(t) + Vm(q, q̇) + G(q) + F (q, q̇) = τ(t) + τd (t)

Dynamic Equations - Newton-Euler method or Lagrangian Dynamics
q(t) Joint variable
M(q) Models of inertial mass
Vm(q, q̇) Models of coriolis/centripetal force
F (q, q̇) Models of friction
G(q) models of Gravity
τ(t) Control torque
τd (t) models of disturbance
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Tracking Control Problem

Let the desired trajectory for the robot manipulator be qd (t)
Now, we can define the tracking error as

e(t) = qd (t)− q(t)

Define the filtered tracking error as

r(t) = ė(t) + λe(t)

Filtered tracking error dynamics

ṙ(t) = ë(t) + λė(t)
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Tracking Control Problem

Filtered tracking error dynamics are: ṙ(t) = ë(t) + λė(t)
Recall the robot dynamics: M(q)q̈(t) + Vm(q, q̇) + G(q) + F (q, q̇) = τ(t) + τd (t)

Mṙ(t) = −Vmr(t)− τ(t) + h + τd (t)
h = M(q)(q̈d + λė) + Vm(q, q̇)(q̇d + λe) + F (q̇) + G(q)

Control Torque

τ(t) = ĥ + Kv r(t)

with λ,Kv being a positive design parameter
The closed-loop dynamics is obtained as

Mṙ(t) = −Vmr(t)− ĥ − Kv r(t) + h + τd (t)
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NN Control - Function Approximator

……… ……

Figure: Feedback NN control
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Steady-State Analysis of Feedback Control System

Filtered tracking error dynamics

ṙ(t) = −Vm − Kv
M r(t) + h − ĥ

M + τd (t)
M

↓

ṙ(t) = −Kr(t) + Nε + d(t)

What does the Lyapunov approach reveal?
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