CSCE 790: Neural Networks and Their Applications AIISC and Dept. Computer Science and Engineering Email: vignar@sc.edu

© Vignesh Narayanan

October 10, 2023

© Vignesh Narayanan

CSCE 790: Neural Networks and Their Applications

October 10, 2023 1 / 27

Hopfield Network

э

© Vignesh Narayanan

Neural Processing Elements (NPE)

Figure: NPE - Continuous time units (Lewis, '99)

$$y_i(t) = \sum_{j=1}^n w_{ij}\sigma_j(x_j)(t), \quad \tau_i \dot{x}_i(t) = -x_i(t) + \sum_{j=1}^n w_{ij}\sigma_j(x_j)(t) + v_{ii}u_i$$

DT - Neural Processing Elements (NPE)

Figure: NPE - Discrete time units (Lewis, '99)

$$y_i(k) = \sum_{j=1}^n w_{ij}\sigma_j(x_j)(k), \quad x_i(k+1) = p_i x_i(k) + \sum_{j=1}^n w_{ij}\sigma_j(x_j)(k) + v_{ii}u_i$$

Hopfield Networks

Figure: Hopfield network with NPE (Lewis, '99)

October 10, 2023 5 / 27

3

イロト イヨト イヨト イヨ

Generalized Recurrent Neural Network

Figure: Generalized recurrent neural networks (Lewis, '99)

Direct Computation of Weights for Hopfield Network

- In the Hopfield net, the weights can be initialized by direct computation of outer products between desired outputs
- Suppose we would like to design a Hopfield network that can classify or discriminate between P given bipolar pattern $\{X^1, X^2, \ldots, X^P\}$ each having n entries of either +1 or -1
- Given x(0) as initial condition (input), the Hopfield network should perform association and match the input with one of the P patterns

イロト 不得下 イヨト イヨト

Hopfield Weight Selection

• Hopfield showed that weights to solve this problem may be selected by using the Hebbian philosophy of learning as the outer product of X^P

$$W = \frac{1}{n} \sum_{p=1}^{P} X^{P} (X^{P})' - \frac{1}{n} PI,$$

- I is the identity matrix
- The purpose of the term PI is to zero out the diagonal
- Note that this weight matrix W is symmetric
- This formula effectively encodes the exemplar patterns in the weights of the NN
- Though there is no weight tuning, technically this formula is an example of supervised learning, as the desired outputs are used to compute the weights

ヘロマ ふぼう くほう くせい

Example

Example

Consider a Hopfield network

$$\dot{x}(t) = -\frac{1}{2}x(t) + \frac{1}{2}W'\sigma(x(t)) + \frac{1}{2}u,$$

with $x(t) \in \mathbb{R}^2$ and a symmetric sigmoid function

$$\sigma(x_i) = \frac{1 - e^{-100x_i}}{1 + e^{-100x_i}}$$

Suppose the prescribed exemplar patterns are $X^1 = (1,1)'$ and $X^2 = (-1,-1)'$. (u=0)

- 34

イロト 不得下 イヨト イヨト

Example

Figure: Trajectories of the Hopfield networks

Figure: Symmetric Sigmoid

CSCE 790: Neural Networks and Their Applications

October 10, 2023 10 / 27

э

▶ ∢ ⊒

Backpropagation Through Time (wiki)

 Backpropagation through time (BPTT) for training certain types of recurrent neural networks is an analogue to Backpropagation algorithm for training feedforward neural networks

Figure: Backpropagation through time (wiki)

CSCE 790: Neural Networks and Their Applications

イロト 不得下 イヨト イヨト 二日

- In the example the neural network contains a recurrent layer f and a feedforward layer g
- Training cost can be defined in various way
- Example: Aggregated cost average of the costs of each time steps
- In the figure the cost at time t + 3 is show by unfolding the recurrent layer f for three time steps and adding the feedforward layer g
- Each instance of f in the unfolded network shares the same parameters
- Thus the weight updates in each instance f_1, f_2, f_3 are summed together

- 34

ヘロト 人間 ト イヨト イヨト

NN Application for Control - Learning Paradigm - "Reinforcement Learning"

October 10, 2023 13 / 27

3

イロト 不得 トイヨト イヨト

Control Application: Lyapunov Techniques for Controller Design

- Recall the problem of Control design:
- Example: Cruise control problem for a toy car model

$$\dot{x}(t) = -rac{c}{m}u(t), \quad x(0) \in \mathbb{R}^+,$$

$$\tag{1}$$

where x(t) is the velocity of the car at time t.

• What happens to this system when a proportional control input u(t) = Kx(t) is selected (K > 0)?

Reference Tracking Problem

- Given a reference/desired velocity r(t), what should be the control input so that the car moves with the given velocity?
- Define the error, i.e., the difference between the reference velocity and the actual velocity as

e(t)=r(t)-x(t)

• Compute how this error changes with time,

$$\dot{e}(t)=\dot{r}(t)-\dot{x}(t)=\dot{r}(t)+\frac{c}{m}u(t),$$

• How to design control input for this case?

Lyapunov Techniques for Controller Design

- Recall the problem of Control design:
- Example: Cruise control problem for a toy car model

$$\dot{x}(t) = -rac{c}{m}u(t), \quad x(0) \in \mathbb{R}^+,$$
(2)

where x(t) is the velocity of the car at time t.

• What happens to this system when a proportional control input u(t) = Kx(t) is selected (K > 0)?

Feedback Control Problem

- Given a reference/desired velocity r(t), what should be the control input so that the car moves with the given velocity?
- Define the error, i.e., the difference between the reference velocity and the actual velocity as

e(t)=r(t)-x(t)

• Compute how this error changes with time,

$$\dot{e}(t)=\dot{r}(t)-\dot{x}(t)=\dot{r}(t)+\frac{c}{m}u(t),$$

• How to design control input for this case?

October 10, 2023 17 / 27

- Given a constant or fixed reference/desired velocity, i.e., r(t) = R for all t > 0, what should be the control input so that the car moves with the given velocity?
- Define the error, i.e., the difference between the reference velocity and the actual velocity as

$$e(t) = R - x(t)$$

• Compute how this error changes with time,

$$\dot{e}(t)=\dot{R}-\dot{x}(t)=0+\frac{c}{m}u(t),$$

• How to design control input for this case?

October 10, 2023 18 / 27

Example: Robotic System

Figure: Robotic Systems (wiki). SKYWASH, DaVinci AEG, Dornier, Fraunhofer Institute, Putzmeister - Germany Using 2 Skywash robots for cleaning a Boeing 747-400 jumbo jet, its grounding time is reduced from 9 to 3.5 hours. The world's largest cleaning brush travels a distance of approximately 3.8 kilometers and covers a surface of around 2,400 m² which is about 85% of the entire plane's surface area. The kinematics consist of 5 main joints for the robot's arm, and an additional one for the turning circle of the rotating washing brush. The Skywash includes database that contains the aircraft-specific geometrical data. A 3-D distance camera accurately positions the mobile robot next to the aircraft. The 3-D camera and the computer determine the aircraft's ideal positioning, and thus the cleaning process begins.

Example

Figure: Medical Robotics

CSCE 790: Neural Networks and Their Applications

October 10, 2023 20 / 27

<ロト < 同ト < 回ト < 回ト = 三日

Figure: Block diagram of a feedback control system

October 10, 2023 21 / 27

3

イロト イボト イヨト イヨ

- Given
 - The desired or the reference trajectory for the robotic system to track
 - Measurements from the sensor informing the actual path/trajectory of the robotic system
- To Do
 - Design control inputs or policies that steers the actual path traced by the robotic system is close to the reference trajectory

イロト 不得下 イヨト イヨト

Physics-based Model

Robotic arm

$$M(q)\ddot{q}(t) + V_m(q,\dot{q}) + G(q) + F(q,\dot{q}) = \tau(t) + \tau_d(t)$$

- Dynamic Equations Newton-Euler method or Lagrangian Dynamics
- q(t) Joint variable
- M(q) Models of inertial mass
- $V_m(q,\dot{q})$ Models of coriolis/centripetal force
- $F(q, \dot{q})$ Models of friction
- G(q) models of Gravity
- $\tau(t)$ Control torque
- $\tau_d(t)$ models of disturbance

- 34

1 E N

Tracking Control Problem

- Let the desired trajectory for the robot manipulator be $q_d(t)$
- Now, we can define the tracking error as

$$e(t) = q_d(t) - q(t)$$

• Define the filtered tracking error as

$$r(t) = \dot{e}(t) + \lambda e(t)$$

• Filtered tracking error dynamics

$$\dot{r}(t) = \ddot{e}(t) + \lambda \dot{e}(t)$$

Tracking Control Problem

- Filtered tracking error dynamics are: $\dot{r}(t) = \ddot{e}(t) + \lambda \dot{e}(t)$
- Recall the robot dynamics: $M(q)\ddot{q}(t) + V_m(q,\dot{q}) + G(q) + F(q,\dot{q}) = \tau(t) + \tau_d(t)$

$$M\dot{r}(t) = -V_m r(t) - \tau(t) + h + \tau_d(t)$$

 $h = M(q)(\ddot{q}_d + \lambda \dot{e}) + V_m(q, \dot{q})(\dot{q}_d + \lambda e) + F(\dot{q}) + G(q)$

Control Torque

$$au(t) = \hat{h} + K_v r(t)$$

with λ, K_v being a positive design parameter

• The closed-loop dynamics is obtained as

$$M\dot{r}(t) = -V_m r(t) - \hat{h} - K_v r(t) + h + \tau_d(t)$$

NN Control - Function Approximator

Figure: Feedback NN control

CSCE 790: Neural Networks and Their Applications

October 10, 2023 26 / 27

- 32

イロト イポト イヨト イヨト

Steady-State Analysis of Feedback Control System

• Filtered tracking error dynamics

$$\dot{r}(t) = -rac{V_m - K_v}{M}r(t) + rac{h - \hat{h}}{M} + rac{ au_d(t)}{M}$$
 \downarrow

$$\dot{r}(t) = -Kr(t) + N_{\varepsilon} + d(t)$$

• What does the Lyapunov approach reveal?

< 17 ►