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What have we done so far?

Neural networks - Parametric models for ML
Multi-layer perceptrons
Data sampled from some unknown set (space) is given
Depending on the data, we formalize a learning problem
We saw supervised learning - classification and regression
Optimization of the NN parameters happens via training through back-propagation
Numerical rounding errors and ill-conditioning, vanishing gradients, generalization errors..
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Dynamical system (wiki)

Dynamical system is a system in which a function describes the time dependence of a point
in an ambient space
At any given time, a dynamical system has a state representing a point in an appropriate
state space
This state is often given by a tuple of real numbers or by a vector in a geometrical manifold
The evolution rule of the dynamical system is a function that describes what future states
follow from the current state
Often the function is deterministic, that is, for a given time interval only one future state
follows from the current state
However, some systems are stochastic, in that random events also affect the evolution of
the state variables
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Examples

Discrete-time dynamical systems

x(t + 1) = F (x(t)), x(0) ∈ Rn, t ∈ Z+ = {0, 1, 2, . . .}.

Continuous-time dynamical systems

dx
dt = ẋ(t) = f (x(t)), x(0) ∈ Rn, t ∈ [0,∞).
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Equilibrium point

Consider a (autonomous) dynamical system given by

ẋ(t) = f (x(t)), x(0) ∈ Rn, t ∈ [0,∞). (1)

Definition
A point xe ∈ Rn is called an equilibrium point of the system (3) if

x(t) = xe =⇒ ẋ(t) = f (xe) = 0, ∀t+. (2)
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Fixed point

Consider a (autonomous) dynamical system given by

x(t + 1) = F (x(t)), x(0) ∈ Rn, t ∈ {0, 1, 2, . . .}. (3)

Definition
A point xe ∈ Rn is called an fixed point of the system (3) if

x(t) = xe =⇒ x(t + 1)− x(t) = F (xe) = 0, ∀t. (4)

States are quantities that informs on what the system is doing now
Since the states are evolving with respect to time, we would like to know what the system
will be doing after a long time – (steady state analysis)
Fixed or Equilibrium points are important in the steady-state analysis of the system
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Linear dynamic system

For a linear (time-invariant) system

ẋ(t) = Ax(t), x(0) ∈ Rn, t ∈ [0,∞) (5)

Equilibrium point
ẋ(t) = 0 =⇒ Ax(t) = 0
There can only be one equilibrium point in the nontrivial case (i.e., A is nonsingular) and it
is at origin, i.e., xe = 0 ∈ Rn.
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Steady-state analysis

Ways to understand what the system will be doing after a long time –
Solve the differential equation ẋ(t) = f (x(t)) to find x(t) =

∫
t f (x(t))dt from some initial

state
Find qualitatively where the system states are evolving towards using graphical techniques

Challenges –
Integration of the nonlinear function may not be solvable!
For higher dimensional systems (x(t) ∈ Rn and n > 2), graphical approach cannot be used
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Stability of an Equilibrium Point
Remark – Stability of a system always implies stability of an equilibrium point of the system!

What is stability? - An important property of dynamic systems..
Captures the ’(in)sensitivity’ of the system to (small) perturbations
Region of attraction?

Figure: Stability analysis for the system ẋ(t) = x2(t)− 1. Equilibrium points are {+1,−1}.
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Recap: Stability

Definition (Asymptotic Stability)
An equilibrium point xe is locally asymptotically stable (AS) if there exists a closed and bounded
set S ⊂ Rn such that, for every x0 ∈ S, one has ‖x(t)− xe‖→ 0 as t →∞. In other words, the
state x(t) converges to xe . If S = Rn, then the stability is global, i.e., with x0 ∈ Rn, the states
converge to the equilibrium point.

Definition (Lyapunov Stability (SISL))
An equilibrium point xe is stable in the sense of Lyapunov (SISL) if for every ε > 0 there exists a
δ(ε) > 0 such that ‖x0 − xe‖< δ implies that ‖x(t)− xe‖< ε for t ≥ t0.

Definition (Boundedness)
An equilibrium point xe is said to be uniformly ultimately bounded if there exists a closed and
bounded set S ⊂ Rn so that for all x0 ∈ S there exists a bound B and a time T (B, x0) such
that ‖x(t)− xe‖≤ B for all t ≥ t0 + T .
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Illustrations

Figure: Types of stability- Illustration via ball with dissipative friction in a gravitational field. (a) Asymptotic
stability (b) Stability in the sense of Lyapunov (c) Unstable behavior. **
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Illustrations

Figure: Boundedness- Illustration via state trajectory of a generic dynamical system (Lewis, 2008).
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Lyapunov Stability Theory

Lyapunov stability theory is a powerful tool for nonlinear stability analysis and control design
Named after Russian Mathematician Aleksandr Mikhailovich Lyapunov and proposed in his
thesis work ”The General Problem of Stability of Motion” at Kharkov University in 1892
The analyze stability of an equilibrium point through a ”Lyapunov function”
Fundamentally, a Lyapunov function can be considered as a proxy to ”generalized Energy
function”
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Lyapunov Stability Theory - Preliminaries

Key idea is to quantify ’the energy function’ and see if it is ’increasing or decreasing’ as the
system evolves
Components/Requirements :

1 A function that can be used as a Lyapunov function candidate and
2 Ability to check increase of decrease in function value

We can compare ’objects’ if they have a scalar numerical representation!
Consequently:

1 Lyapunov function should be a scalar function, i.e., L(x(t)) : Rn → R, where x(t) is the state
of a dynamical system.

2 We need the notion of positive definite (PD), negative definite (ND), positive semi-definite
(PSD) and negative semi-definite (NSD) functions..
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Lyapunov Stability Theory - Preliminaries

Definition (PD, ND, PSD, NSD)
Let L(x) : Rn → R be a scalar function such that L(0) = 0, and S be a compact subset (closed
and bounded subset) of Rn. Then, L(x) is said to be

1 Locally positive definite if L(x) > 0, when x 6= 0 and for any x ∈ S
2 Locally positive semi-definite if L(x) ≥ 0, ∀x ∈ S
3 Locally negative definite if L(x) < 0, when x 6= 0 and ∀x ∈ S
4 Locally negative semi-definite if L(x) ≤ 0, ∀x ∈ S

The definition can be extended to characterize the function in the entire real domain, i.e., when
S = Rn, we replace ’local’ with ’global’ in the definition.
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Lyapunov Function

Consider the (autonomous) nonlinear dynamical system described by

ẋ(t) = f (x(t)), x(0) ∈ Rn, t ∈ [0,∞). (6)

Definition (Lyapunov function)
A function L(x(t)) : Rn → R with continuous partial derivatives is said to be a Lyapunov
function for the system (6) if for some compact set S ∈ Rn, one has locally:

L(x(t)) is positive definite, i.e., L(x) > 0 for x 6= 0 and for all x ∈ S
L̇(x(t)) is negative semi-definite, i.e., L̇(x(t)) = ( ∂L

∂x )′ dx
dt ≤ 0
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Lyapunov functions: Remarks

If we indeed view the Lyapunov function as a generalized ’Energy function’, we require the
function to satisfy two requirements:
L(x(t)) > 0 for x 6= 0, for all x ∈ S
This implies - finite energy everywhere except at origin
L̇(x(t)) ≤ 0
The second requirement implies that the change in Lyapunov function with respect to time
is negative, i.e., the finite energy is non-increasing
This definition helps understand stability of the system - (Does it specify the associated
equilibrium point?)
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Main Results

Theorem (SISL)
If there exists a Lyapunov function for the system

ẋ(t) = f (x(t)), x(0) ∈ Rn, t ∈ [0,∞), (7)

then the equilibrium point is stable in the sense of Lyapunov (SISL).

Theorem (AS)
If there exists a Lyapunov function L(x(t)) : Rn → R for the system (7) which satisfies
L̇(x(t)) < 0 for x ∈ S ⊂ Rn, then the equilibrium point is asymptotically stable (AS).

If the Lyapunov function is supported on S = Rn and if L(x(t))→∞ as ‖x(t)‖→ ∞, then
the equilibrium point is globally SISL.
Global AS requires conditions in Theorem (AS) to hold for S = Rn
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Example 1

Consider the system:

ẋ1(t) = x1(t)x2
2 (t) + x1(t)(x2

1 (t) + x2
2 (t)− 3)

ẋ2(t) = −x2
1 (t)x2(t) + x2(t)(x2

1 (t) + x2
2 (t)− 3). (8)

Is the equilibrium point at origin stable?
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Example 2

Consider the system:

ẋ1(t) = x1(t)x2
2 (t)− x1(t)(x2

1 (t) + x2
2 (t))

ẋ2(t) = −x2
1 (t)x2(t)− x2(t)(x2

1 (t) + x2
2 (t)). (9)

Is the equilibrium point at origin stable?
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Example 3

Consider the system:

ẋ1(t) = x1(t)x2
2 (t)− x1(t)

ẋ2(t) = −x2
1 (t)x2(t). (10)

Is the equilibrium point at origin stable?
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Example 4

Consider the system:

ẋ(t) = x2(t)− 1. (11)

Are the equilibrium points of this system stable?
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Dynamic Neural Networks

Dynamic networks have memory
Dynamic networks are networks that contain delays (or integrators, for continuous-time
networks) and that operate on a sequence of inputs
In other words, the ordering of the inputs is important to the operation of the network
These dynamic networks can have purely feed-forward connections, like the adaptive filters,
or they can also have some feedback (recurrent) connections, like the Hopfield network
Their response at any given time will depend not only on the current input, but on the
history of the input sequence
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Fundamental Memory Storage Units

Figure: Fundamental units storing memory in discrete time and continuous time
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Feedback

Output of an element in the system influences in part the input applied to that particular
element, giving rise to one of more closed paths for transmission of signals around the
system
Recurrent networks:

yk(n) = Aẋj(n)

ẋj(n) = xj(n) + Byk(n)
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Recurrent Network

Figure: Recurrent network illustrated via signal
flow graph

yk(n) = Aẋj(n)

ẋj(n) = xj(n) + Byk(n)

yk(n) = A[xj(n) + Byk(n)]

yk(n)− AByk(n) = Axj(n)

yk(n) = A
1− AB xj(n)→ Closed-loop operator
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Example

Figure: Example: Recurrent network with no self-loop
and no hidden neuron

y1(k) = y2(k − 1) + y3(k − 1) + y4(k − 1)
y2(k) = y1(k − 1) + y3(k − 1) + y4(k − 1)
y3(k) = y1(k − 1) + y2(k − 1) + y4(k − 1)
y4(k) = y1(k − 1) + y2(k − 1) + y3(k − 1)
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