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Generalization?

The out-of-sample error Eout measures how well our training on D has generalized to data
that we have not seen before
Eout is based on the performance over the entire input space X
Intuitively, if we want to estimate the value of Eout using a sample of data points, these
points must be ‘fresh’ test points that have not been used for training
The in sample error Ein, by contrast, is based on data points that have been used for
training
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Generalization

The value of Ein does not always generalize to a similar value of Eout

Generalization is a key issue in learning
One can define the generalization error as the discrepancy between Ein and Eout

Universal approximation theorem warrants Ein → 0 as number of neurons in the hidden
layers →∞
For more, check: Learning from Data: A Short Course, by Hsuan-Tien Lin, Malik
Magdon-Ismail, and Yaser Abu-Mostafa
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Convex Set

Definition
A subset C ⊂ Rn is a convex set if αx + (1− α)y ∈ C , ∀x , y ∈ C , ∀α ∈ [0, 1].

Figure: Convex Set

Figure: (a) Illustration of a convex set which looks
somewhat like a deformed circle.

Figure: Non-Convex Set

Figure: (b) Illustration of a non-convex set which
looks somewhat like a boomerang.
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Convex Sets - Example

Example (Convex sets)
1. A hyperplane H = {x ∈ Rn : pT x = c} for some p ∈ Rn, p 6= 0, and c ∈ R, for example, a

plane in R3, p1x + p2y + p3z = 1.
2. Half space H+ = {x ∈ Rn : pT x ≥ c} or H− = {x ∈ Rn : pT x ≤ c}.
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Building Blocks of Hulls

The set of all convex combinations ∑3
i=1 λixi of x1, x2, x3 ∈ Rn with λ1 + λ2 + λ3 = 1 is the

triangular region determined by x1, x2, x3 (formed between vertices x1, x2, x3).
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Convex Hull

More generally, the set of all convex combinations ∑k
i=1 λixi of k vectors x1, . . . , xk ∈ Rn is the

convex polyhedral region determined by x1, . . . , xk (the so-called convex Hull, the intersection of
all convex sets containing xi , i = 1, . . . , k).

Figure: Illustration of a tetrahedron that is a
convex combination of four vectors.

Figure: A convex hull of 100 random uniform
points on a sphere.
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Convex Hull
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(b) Output.

Figure: Convex Hull of a set of points in R2.
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Convex Hull

Given an arbitrary set S in Rn, different convex sets can be generated from S. In particular, we
discuss below the convex hull of S.
Definition (Convex hull)
Let S be an arbitrary set in Rn. The convex hull of S, denoted conv(S), is the collection of all
convex combinations of S. In other words, x ∈ conv(S) if and only if x can be represented as

x =
k∑

j=1
λjxj ,

k∑
j=1

λj = 1,

λj ≥ 0 for j = 1, . . . , k,

where k is a positive integer and x1, . . . , xk ∈ S.
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Interpolation

Definition
Interpolation occurs for a sample x whenever this sample belongs to the convex hull of a set of
samples X , {x1, . . . , xN}, if not, extrapolation occurs.

Theorem
Given a d−dimensional dataset X , {x1, . . . , xN} with i.i.d. samples uniformly drawn from an
hyperball, the probability that a new sample x is in interpolation regime has the following
asymptotic behavior

lim
d→∞

p(x ∈ Hull(X ))︸ ︷︷ ︸
Interpolation

=
{

1⇐⇒ N>d−12
d
2

0⇐⇒ N<d−12
d
2

(1)

Learning in High Dimension Always Amounts to Extrapolation
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Convex Optimization (for completeness)

Convex cost function
Constraints represented by convex functions
Convex constraints =⇒ constraint set is convex
→ Convex optimization problem
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Automatic Differentiation

Computational methods for calculating derivatives

Manual derivation and coding them
Numerical differentiation using finite difference approximation
Symbolic differentiation using expression manipulation
Automatic or Algorithmic differentiation
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Automatic Differentiation (AD)

Manual differentiation
Time consuming
Prone to error

Numerical differentiation
Prone to round-off and truncation errors
Simple to implement
Scales poorly for gradients

Symbolic differentiation
Addresses weaknesses of manual and numerical differentiation
Often results in complex and cryptic expressions
“Expression swell” is a problem

Manual and symbolic differentiation require closed-form expressions
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Autodiff

AD as a technical term refers to a specific family of techniques that compute derivatives
through accumulation of values during code execution to generate numerical derivative
evaluations rather than derivative expressions
Back-propagation algorithm is a specialized version of autodiff
AD is partly symbolic and partly numerical

AD provide numerical values of derivatives (as opposed to derivative expressions) and
AD uses symbolic rules of differentiation (but keeps track of derivative values as opposed to
the resulting expressions)
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Illustration of Backpropagation

Figure: Illustration of backpropagation
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Numerical Differentiation

Numerical differentiation is the finite difference approximation of derivatives using values of
the original function evaluated at some sample points
Numerical approximations of derivatives are inherently ill-conditioned and unstable
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Symbolic Differentiation

Symbolic differentiation is the automatic manipulation of expressions for obtaining
derivative expressions
Symbolic derivatives do not lend themselves to efficient runtime calculation of derivative
values
Careless symbolic differentiation can easily produce exponentially large symbolic expressions
(expression swell) - long time to evaluate
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Expression Swell

Figure: Illustration of expression swell using logistic map ln+1 = 4ln(1− ln), l1 = x
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Numerical-Symbolic Differentiation to AD

When we are concerned with the accurate numerical evaluation of derivatives and not so
much with their actual symbolic form, it is in principle possible to significantly simplify
computations by storing only the values of intermediate sub-expressions in memory
Moreover, for further efficiency, we can interleave as much as possible the differentiation
and simplification steps
This interleaving idea forms the basis of AD
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Illustration (Contents related to AD are from Baydin, et al., 2018)
The range of approaches for differentiating
mathematical expressions and computer code,
looking at the example of a truncated logis-
tic map (upper left). Symbolic differentiation
(center right) gives exact results but requires
closed-form input and suffers from expression
swell; numerical differentiation (lower right)
has problems of accuracy due to round-off
and truncation errors; automatic differentia-
tion (lower left) is as accurate as symbolic
differentiation with only a constant factor of
overhead and support for control flow.
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Automatic Differentiation

Autodiff - Baydin, et al., 2018
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https://arxiv.org/pdf/1502.05767.pdf

